People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Reid, Gillian
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (50/50 displayed)
- 2024Electrodeposition of bismuth, tellurium and bismuth telluride through sub-10 nm mesoporous silica thin filmscitations
- 2024Fluidized bed chemical vapor deposition on hard carbon powders to produce composite energy materials
- 2024Electrodeposition of 2D layered tungsten diselenide thin films using a single source precursorcitations
- 2023High sodium-ion battery capacity in sulfur-deficient tin(II) sulfide thin films with a microrod morphologycitations
- 2023Temperature effects on the electrodeposition of semiconductors from a weakly coordinating solventcitations
- 2022Vertical and Lateral Electrodeposition of 2D Material Heterostructures
- 2022Diffusion in weakly coordinating solventscitations
- 2022Tungsten(VI) selenide tetrachloride, WSeCl 4 - synthesis, properties, coordination complexes and application of [WSeCl 4 (SenBu 2 )] for CVD growth of WSe 2 thin filmscitations
- 20222D material based optoelectronics by electroplating
- 20222D material based optoelectronics by electroplating
- 2021Mono- and di-phosphine oxide complexes of aluminium, gallium and indium with weakly coordinating triflate anions – Synthesis, structures and propertiescitations
- 2021Electrodeposited WS 2 monolayers on patterned graphenecitations
- 2021Low pressure CVD of GeE (E = Te, Se, S) thin films from alkylgermanium chalcogenolate precursors and effect of the deposition temperature on the thermoelectric performance of GeTecitations
- 2021Low pressure CVD of GeE (E = Te, Se, S) thin films from alkylgermanium chalcogenolate precursors and effect of the deposition temperature on the thermoelectric performance of GeTecitations
- 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]citations
- 2021Low temperature CVD of thermoelectric SnTe thin films from the single source precursor, [nBu3Sn(TenBu)]citations
- 2021Tungsten disulfide thin films via electrodeposition from a single source precursorcitations
- 2021Lateral growth of MoS2 2D material semiconductors over an insulator via electrodepositioncitations
- 2021Lateral growth of MoS 2 2D material semiconductors over an insulator via electrodepositioncitations
- 2020Large-area electrodeposition of few-layer MoS2 on graphene for 2D material heterostructurescitations
- 2020Thermoelectric properties of bismuth telluride thin films electrodeposited from a non-aqueous solutioncitations
- 2020Selective chemical vapor deposition approach for Sb2Te3 thin film micro-thermoelectric generatorscitations
- 2020Chloroantimonate electrochemistry in dichloromethanecitations
- 2020Improved thermoelectric performance of Bi2Se3 alloyed Bi2Te3 thin films via low pressure chemical vapour depositioncitations
- 2020Large-area electrodeposition of few-layer MoS 2 on graphene for 2D material heterostructurescitations
- 20202D SnSe nanonetworks; growth and evaluation for Li-ion battery applications
- 2020Electrodeposition of MoS2 from dichloromethanecitations
- 2020Improved thermoelectric performance of Bi 2 Se 3 alloyed Bi 2 Te 3 thin films via low pressure chemical vapour depositioncitations
- 2018Towards a 3D GeSbTe phase change memory with integrated selector by non-aqueous electrodepositioncitations
- 2018Combination of solid state and electrochemical impedance spectroscopy to explore effects of porosity in sol-gel derived BaTiO3 thin filmscitations
- 2018Electrodeposition of a functional solid state memory material – germanium antimony telluride from a non-aqueous plating bathcitations
- 2017Tin, bismuth, and tin–bismuth alloy electrodeposition from chlorometalate salts in deep eutectic solventscitations
- 2016Haloplumbate salts as reagents for the non-aqueous electrodeposition of leadcitations
- 2016A versatile precursor system for supercritical fluid electrodeposition of main-group materialscitations
- 2015Chemical vapour deposition of antimony chalcogenides with positional and orientational control: precursor design and substrate selectivitycitations
- 2015Aza-macrocyclic complexes of Group 1 cations:synthesis, structures and density functional theory studycitations
- 2015Non-aqueous electrodeposition of functional semiconducting metal chalcogenides: Ge2Sb2Te5phase change memorycitations
- 2015A Versatile Precursor System for Supercritical Fluid Electrodeposition of Main-Group Materialscitations
- 2015Phase-change memory properties of electrodeposited Ge-Sb-Te thin filmcitations
- 2014Niobium(v) and tantalum(v) halide chalcogenoether complexes – towards single source CVD precursors for ME2thin filmscitations
- 2013Non-aqueous electrodeposition of metals and metalloids from halometallate saltscitations
- 2013Low pressure chemical vapour deposition of crystalline Ga2Te3 and Ga2Se3 thin films from single source precursors using telluroether and selenoether complexescitations
- 2013Telluroether and selenoether complexes as single source reagents for low pressure chemical vapor deposition of crystalline Ga2Te3 and Ga2Se3 thin filmscitations
- 2013Chromium(V) oxide trichloride, and some pentachlorido-oxido-chromate(V) salts: structures and spectroscopic characterizationcitations
- 2012Highly selective chemical vapor deposition of tin diselenide thin films onto patterned substrates via single source diselenoether precursorscitations
- 2011Chemical vapor deposition of GaP and GaAs thin films from [nBu2Ga(µ-EtBu2)2GanBu2] (E= P or As) and Ga(PtBu2)3citations
- 2010Synthesis and structure of [{C7F15CO2}2AgAu(PPh3)]2 and its use in electrodeposition of gold–silver alloyscitations
- 2009Spectroscopic and Vanadium K-Edge EXAFS Studies on VO2Cl and the Crystal Structure of [{Cl2VO(O2PCl2)(POCl3)}2]citations
- 2009Electrodeposition of metals from supercritical fluidscitations
- 2001Silver(I) complexes with the mixed P/O donor ligand Ph2P(CH2)(2)O(CH2)(2)O(CH2)(2)PPh2 (L-1) and the crystal structures of Ag(L-1) (CF3SO3), Ag-2(L-1)(3) (CF3SO3)(2) and Ag(L-1)(NO3)citations
Places of action
Organizations | Location | People |
---|
article
Niobium(v) and tantalum(v) halide chalcogenoether complexes – towards single source CVD precursors for ME2thin films
Abstract
A series of pentavalent niobium and tantalum halide complexes with thio-, seleno- and telluro-ether ligands, [MCl5(EnBu2)] (M = Nb, Ta; E = S, Se, Te), [TaX5(TeMe2)] (X = Cl, Br, F) and the dinuclear [(MCl5)2{o-C6H4(CH2SEt)2}] (M = Nb, Ta), has been prepared and characterised by IR, 1H, 13C{1H}, 77Se, 93Nb and 125Te NMR spectroscopy, as appropriate, and microanalyses. Confirmation of the tantalum(V)–telluroether coordination follows from the crystal structure of [TaCl5(TeMe2)], which represents the highest oxidation state transition metal complex with telluroether coordination structurally authenticated. The Ta(V) monotelluroether complexes are much more stable than the Nb(V) analogues. In the presence of TaCl5 the ditelluroether, CH2(CH2TetBu)2, is decomposed; one of the products is the dealkylated [tBuTe(CH2)3Te][TaCl6], whose structure was determined crystallographically. Crystal structures of [(MCl5)2{o-C6H4(CH2SEt)2}] (M = Nb, Ta) show ligand-bridged species. The complexes bearing ?-hydrogen atoms on the terminal alkyl substituents have also been investigated as single source reagents for the deposition of ME2 thin films via low pressure chemical vapour deposition. While the tantalum complexes proved to be unsuitable, the [NbCl5(SnBu2)] and [NbCl5(SenBu2)] deposit NbS2 and NbSe2 as hexagonal platelets onto SiO2 substrates at 750 °C and 650 °C, respectively. Grazing incidence and in-plane X-ray diffraction confirm both materials adopt the 3R-polytype (R3mh), and the sulfide shows preferred orientation with the crystallites aligned predominantly with the c axis perpendicular to the substrate. Scanning electron microscopy and Raman spectra are consistent with the X-ray data.