People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Punkkinen, Marko
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2024Polycrystalline silicon, a molecular dynamics study : I. Deposition and growth modescitations
- 2024Polycrystalline silicon, a molecular dynamics study: Part I --- Deposition and growth modescitations
- 2024Bridging the gap between surface physics and photonicscitations
- 2024Polycrystalline silicon, a molecular dynamics study: Part II --- Grains, grain boundaries and their structurecitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
- 2015Oxidation of the GaAs semiconductor at the Al2O3/GaAs junctioncitations
Places of action
Organizations | Location | People |
---|
article
Oxidation of the GaAs semiconductor at the Al2O3/GaAs junction
Abstract
<p>Atomic-scale understanding and processing of the oxidation of III-V compound-semiconductor surfaces are essential for developing materials for various devices (e.g., transistors, solar cells, and light emitting diodes). The oxidation-induced defect-rich phases at the interfaces of oxide/III-V junctions significantly affect the electrical performance of devices. In this study, a method to control the GaAs oxidation and interfacial defect density at the prototypical Al<sub>2</sub>O<sub>3</sub>/GaAs junction grown via atomic layer deposition (ALD) is demonstrated. Namely, pre-oxidation of GaAs(100) with an In-induced c(8 × 2) surface reconstruction, leading to a crystalline c(4 × 2)-O interface oxide before ALD of Al<sub>2</sub>O<sub>3</sub>, decreases band-gap defect density at the Al<sub>2</sub>O<sub>3</sub>/GaAs interface. Concomitantly, X-ray photoelectron spectroscopy (XPS) from these Al<sub>2</sub>O<sub>3</sub>/GaAs interfaces shows that the high oxidation state of Ga (Ga<sub>2</sub>O<sub>3</sub> type) decreases, and the corresponding In<sub>2</sub>O<sub>3</sub> type phase forms when employing the c(4 × 2)-O interface layer. Detailed synchrotron-radiation XPS of the counterpart c(4 × 2)-O oxide of InAs(100) has been utilized to elucidate the atomic structure of the useful c(4 × 2)-O interface layer and its oxidation process. The spectral analysis reveals that three different oxygen sites, five oxidation-induced group-III atomic sites with core-level shifts between -0.2 eV and +1.0 eV, and hardly any oxygen-induced changes at the As sites form during the oxidation. These results, discussed within the current atomic model of the c(4 × 2)-O interface, provide insight into the atomic structures of oxide/III-V interfaces and a way to control the semiconductor oxidation.</p>