Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ha, Krystal

  • Google
  • 1
  • 6
  • 61

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2015Protic ionic liquids (PILs) nanostructure and physicochemical properties: development of high-throughput methodology for PIL creation and property screens61citations

Places of action

Chart of shared publication
Greaves, Tam
1 / 1 shared
Kirby, Nigel
1 / 9 shared
Muir, Ben
1 / 10 shared
Howard, Shaun
1 / 4 shared
Drummond, Calum
1 / 2 shared
Asoka, Weerawardina
1 / 1 shared
Chart of publication period
2015

Co-Authors (by relevance)

  • Greaves, Tam
  • Kirby, Nigel
  • Muir, Ben
  • Howard, Shaun
  • Drummond, Calum
  • Asoka, Weerawardina
OrganizationsLocationPeople

article

Protic ionic liquids (PILs) nanostructure and physicochemical properties: development of high-throughput methodology for PIL creation and property screens

  • Ha, Krystal
  • Greaves, Tam
  • Kirby, Nigel
  • Muir, Ben
  • Howard, Shaun
  • Drummond, Calum
  • Asoka, Weerawardina
Abstract

A high-throughput approach was developed in order to prepare and dry a series of protic ionic liquids (PILs) from 48 Bronsted acid-base combinations. Many combinations comprised an alkyl carboxylic acid paired with an alkyl amine. Visual screens were developed to identify which acid-base combinations formed PILs, and of those, which PILs were likely to have high surface tensions, low viscosities, and low melting points. The surface tension screen was validated through pendant drop surface tension measurements. Karl Fischer coulometric titration was used to obtain the water contents, and it was noted that there is a considerable difference in the drying rate throughout this series of PILs. It was observed that an octyl chain present on either the cation or anion was detrimental to the formation of a PIL with a low melting point, and instead increased the likelihood of a gel or solid forming. The nanostructure of the PILs was determined, using synchrotron small and wide angle X-ray scattering (SAXS/WAXS), to consist of polar and non-polar domains, with the alkyl chains on the cation and anion intercalating. The results indicate that both the alkyl chain on the cation and/or anion contribute to the correlation distance, for the intermediate range order, with the expectation that there is charge alternation of the ions in the polar region. The maximum correlation distance was observed when there was an alkyl chain present on only one ion. This correlation distance could be significantly reduced by varying the alkyl chain length present on the other ion, which was attributed to increased disorder and interdigitation of chains, and to toe-to-toe alignment of the chains. To the best of our knowledge this is the first PIL report into the effect of having an alkyl chain present on both the cation and the anion.

Topics
  • impedance spectroscopy
  • surface
  • forming
  • amine
  • drying
  • small angle x-ray scattering
  • titration
  • carboxylic acid