People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hofmann, Stephan
University of Cambridge
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (46/46 displayed)
- 2024Controlled Fabrication of Native Ultra-Thin Amorphous Gallium Oxide From 2D Gallium Sulfide for Emerging Electronic Applications
- 2023Fast Twist Angle Mapping of Bilayer Graphene Using Spectroscopic Ellipsometric Contrast Microscopy.
- 2022Defect seeded remote epitaxy of GaAs films on graphene.
- 2021Giant photoluminescence enhancement in MoSe2 monolayers treated with oleic acid ligands.
- 2021Piezoelectric materials for energy harvesting and sensing applicationscitations
- 2021Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenidescitations
- 2021Piezoelectric Materials for Energy Harvesting and Sensing Applications: Roadmap for Future Smart Materials
- 2021Rational Passivation of Sulfur Vacancy Defects in Two-Dimensional Transition Metal Dichalcogenides.
- 2021Piezoelectic Materials for energy harvesting and sensing applications: roadmap for future smart materialscitations
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020High-Throughput Electrical Characterization of Nanomaterials from Room to Cryogenic Temperatures.
- 2020Integrated Wafer Scale Growth of Single Crystal Metal Films and High Quality Graphene.
- 2020High-throughput electrical characterization of nanomaterials from room to cryogenic temperaturescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS2: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Integrated wafer scale growth of single crystal metal films and high quality graphenecitations
- 2020Graphene-passivated nickel as an efficient hole-injecting electrode for large area organic semiconductor devicescitations
- 2020Understanding metal organic chemical vapour deposition of monolayer WS<sub>2</sub>: the enhancing role of Au substrate for simple organosulfur precursors.
- 2020Catalytically mediated epitaxy of 3D semiconductors on van der Waals substratescitations
- 2019Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitridecitations
- 2019Enhancing Photoluminescence and Mobilities in WS2 Monolayers with Oleic Acid Ligands.
- 2019Spectrally Resolved Photodynamics of Individual Emitters in Large-Area Monolayers of Hexagonal Boron Nitride.
- 2018Non-destructive Thickness Mapping of Wafer-Scale Hexagonal Boron Nitride Down to a Monolayercitations
- 2018Compressive Behavior and Failure Mechanisms of Freestanding and Composite 3D Graphitic Foamscitations
- 2018Reduced Graphene Oxide as a Monolithic Multifunctional Conductive Binder for Activated Carbon Supercapacitors.
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2018Insulator-to-Metallic Spin-Filtering in 2D-Magnetic Tunnel Junctions Based on Hexagonal Boron Nitridecitations
- 2017Engineering the Photoresponse of InAs Nanowires.
- 2017Engineering the Photoresponse of InAs Nanowirescitations
- 2017Chemical vapour deposition of freestanding sub-60 nm graphene gyroidscitations
- 2016Nanoscale Plasmon-Enhanced Spectroscopy in Memristive Switches.
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocomposites.
- 2016Controlling nanowire growth through electric field-induced deformation of the catalyst dropletcitations
- 2016In Situ Observations of Phase Transitions in Metastable Nickel (Carbide)/Carbon Nanocompositescitations
- 2016In Situ Graphene Growth Dynamics on Polycrystalline Catalyst Foilscitations
- 2016Time Evolution of the Wettability of Supported Graphene under Ambient Air Exposurecitations
- 2015Influence of packing density and surface roughness of vertically-aligned carbon nanotubes on adhesive properties of gecko-inspired mimetics.
- 2014Bio-inspired hierarchical polymer fiber-carbon nanotube adhesivescitations
- 2014The role of the sp2:sp3 substrate content in carbon supported nanotube growthcitations
- 2014CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.
- 2014The role of the sp 2 :sp 3 substrate content in carbon supported nanotube growthcitations
- 2014The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditionscitations
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2013Catalyst composition and impurity-dependent kinetics of nanowire heteroepitaxy.
- 2012The phase of iron catalyst nanoparticles during carbon nanotube growthcitations
- 2011In Situ Characterization of Alloy Catalysts for Low-Temperature Graphene Growthcitations
- 2003Low-temperature growth of carbon nanotubes by plasma-enhanced chemical vapor depositioncitations
Places of action
Organizations | Location | People |
---|
article
The influence of intercalated oxygen on the properties of graphene on polycrystalline Cu under various environmental conditions
Abstract
Intercalation of oxygen at the interface of graphene grown by chemical vapour deposition and its polycrystalline copper catalyst can have a strong impact on the electronic, chemical and structural properties of both the graphene and the Cu. This can affect the oxidation resistance of the metal as well as subsequent graphene transfer. Here, we show, using near ambient pressure X-ray photoelectron spectroscopy (NAP-XPS), X-ray absorption near edge spectroscopy (XANES), energy dispersive X-ray spectroscopy (EDX) and (environmental) scanning electron microscopy (ESEM) that both the oxygen intercalation and de-intercalation are kinetically driven and can be clearly distinguished from carbon etching. The obtained results reveal that a charge transfer between as grown graphene and Cu can be annulled by intercalating oxygen creating quasi-free-standing graphene. This effect is found to be reversible on vacuum annealing proceeding via graphene grain boundaries and defects within the graphene but not without loss of graphene by oxidative etching for repeated (de-)intercalation cycles.