People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ravnsbæk, Dorthe Bomholdt
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2023All-solid-state sodium-ion batteries operating at room temperature based on NASICON-type NaTi2(PO4)3 cathode and ceramic NASICON solid electrolytecitations
- 2022An Easy‐to‐Use Custom‐Built Cell for Neutron Powder Diffraction Studies of Rechargeable Batteriescitations
- 2021Synthesis and Thermal Degradation of MAl4(OH)12SO4·3H2O with M = Co2+, Ni2+, Cu2+, and Zn2+citations
- 2021Understanding disorder in oxide-based electrode materials for rechargeable batteriescitations
- 2021Synthesis and Thermal Degradation of MAl 4 (OH) 12 SO 4 ·3H 2 O with M = Co 2+ , Ni 2+ , Cu 2+ , and Zn 2+citations
- 2020The Effect of oxygen defects on the structural evolution of LiVPO4F1−yoy cathode materialscitations
- 2020On the synthesis and structure of the copper-molybdenum oxide bronzes
- 2017Synthesis, structure and properties of bimetallic sodium rare-earth (RE) borohydrides, NaRE(BH4)4, RE = Ce, Pr, Er or Gdcitations
- 2017Nanoconfined NaAlH4 Conversion Electrodes for Li Batteriescitations
- 2016Synthesis, structure and properties of new bimetallic sodium and potassium lanthanum borohydridescitations
- 2015Manganese borohydride; synthesis and characterizationcitations
- 2014A novel intermediate in the LiAlH4–LiNH2 hydrogen storage systemcitations
- 2014Hydrogen reversibility of LiBH₄-MgH₂-Al compositescitations
- 2011Novel metal boroydrides: Studies of synthesis, crystal chemistry and thermal decomposition
Places of action
Organizations | Location | People |
---|
article
Hydrogen reversibility of LiBH₄-MgH₂-Al composites
Abstract
<p>The detailed mechanism of hydrogen release in LiBH4-MgH2-Al composites of molar ratios 4 : 1 : 1 and 4 : 1 : 5 are investigated during multiple cycles of hydrogen release and uptake. This study combines information from several methods, i.e., in situ synchrotron radiation powder X-ray diffraction, (11)B magic-angle spinning (MAS) NMR, Sievert's measurements, Fourier transform infrared spectroscopy and simultaneous thermogravimetric analysis, differential scanning calorimetry and mass spectroscopy. The composites of LiBH4-MgH2-Al are compared with the behavior of the LiBH4-Al and LiBH4-MgH2 systems. The decomposition pathway of the LiBH4-MgH2-Al system is different for the two investigated molar ratios, although it ultimately results in the formation of LiAl, Mg(x)Al(1-x)B2 and Li2B12H12 in both cases. For the 4 : 1 : 1-molar ratio, Mg(0.9)Al(0.1) and Mg17Al12 are observed as intermediates. However, only Mg is observed as an intermediate in the 4 : 1 : 5-sample, which may be due to an earlier formation of Mg(x)Al(1-x)B2, reflecting the complex chemistry of Al-Mg phases. Hydrogen release and uptake reveals a decrease in the hydrogen storage capacity upon cycling. This loss reflects the formation of Li2B12H12 as observed by (11)B NMR and infrared spectroscopy for the cycled samples. Furthermore, it is shown that the Li2B12H12 formation can be limited significantly by applying moderate hydrogen partial pressure during decomposition.</p>