People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Malda, Jos
Utrecht University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (39/39 displayed)
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructscitations
- 20243D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed magneto-active microfiber scaffolds for remote stimulation of 3D in vitro skeletal muscle modelscitations
- 20233D Printed Magneto‐Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Modelscitations
- 20233D printed and punched porous surfaces of a non-resorbable, biphasic implant for the repair of osteochondral lesions improves repair tissue adherence and ingrowth
- 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interfacecitations
- 2021The Complexity of Joint Regeneration: How an Advanced Implant could Fail by Its In Vivo Proven Bone Componentcitations
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking
- 2020Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinkingcitations
- 2020Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assemblycitations
- 2020A Multifunctional Nanocomposite Hydrogel for Endoscopic Tracking and Manipulationcitations
- 2020A composite hydrogel-3D printed thermoplast osteochondral anchor as an example for a zonal approach to cartilage repair: in vivo performance in a long-term equine modelcitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfacescitations
- 2020Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Modelcitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repaircitations
- 2020Using 3D-printing to fabricate a microfluidic vascular model to mimic arterial thrombosis
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Modelcitations
- 2020Orthotopic Bone Regeneration within 3D Printed Bioceramic Scaffolds with Region-Dependent Porosity Gradients in an Equine Model
- 2019T2* and quantitative susceptibility mapping in an equine model of post-traumatic osteoarthritis: assessment of mechanical and structural properties of articular cartilage
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration
- 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regenerationcitations
- 2019Arthroscopic determination of cartilage proteoglycan content and collagen network structure with near-infrared spectroscopycitations
- 2019A Stimuli-Responsive Nanocomposite for 3D Anisotropic Cell-Guidance and Magnetic Soft Roboticscitations
- 2019Volumetric Bioprinting of Complex Living-Tissue Constructs within Secondscitations
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites
- 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel compositescitations
- 2018Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Compositescitations
- 2017Assessing bioink shape fidelity to aid material development in 3D bioprintingcitations
- 2017Triblock copolymers based on ε-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Triblock copolymers based on epsilon-caprolactone and trimethylene carbonate for the 3D printing of tissue engineering scaffoldscitations
- 2017Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography datacitations
- 2016A thermo-responsive and photo-polymerizable chondroitin sulfate-based hydrogel for 3D printing applicationscitations
- 2016Yield stress determines bioprintability of hydrogels based on gelatin-methacryloyl and gellan gum for cartilage bioprintingcitations
- 2014Development and characterisation of a new bioink for additive tissue manufacturingcitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructscitations
- 2014Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs
Places of action
Organizations | Location | People |
---|
article
Development and characterisation of a new bioink for additive tissue manufacturing
Abstract
Additive manufacturing forms a potential route towards economically viable production of cellular constructs for tissue engineering. Hydrogels are a suitable class of materials for cell delivery and 3D culture, but are generally unsuitable as construction materials. Gelatine-methacrylamide is an example of such a hydrogel system widely used in the field of tissue engineering, e.g. for cartilage and cardiovascular applications. Here we show that by the addition of gellan gum to gelatine-methacrylamide and tailoring salt concentrations, rheological properties such as pseudo-plasticity and yield stress can be optimised towards gel dispensing for additive manufacturing processes. In the hydrogel formulation, salt is partly substituted by mannose to obtain isotonicity and prevent a reduction in cell viability. With this, the potential of this new bioink for additive tissue manufacturing purposes is demonstrated. This journal is © the Partner Organisations 2014.