People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Savaniu, Cristian Daniel
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2023The exsolution of Cu particles from doped barium cerate zirconate via barium cuprate intermediate phasescitations
- 2021Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La0.20Sr0.25Ca0.45TiO3 anode supports
- 2021Use of interplay between A-site non-stoichiometry and hydroxide doping to deliver novel proton-conducting perovskite oxidescitations
- 2021Aqueous thick-film ceramic processing of planar solid oxide fuel cells using La 0.20 Sr 0.25 C a0.45 TiO 3 anode supports
- 2020High oxide ion and proton conductivity in a disordered hexagonal perovskitecitations
- 2015Anodescitations
- 2015Utilisation of coal in direct carbon fuel cellscitations
- 2013Preparation via a solution method of La 0.2 Sr 0.25 Ca 0.45 TiO 3 and its characterization for anode supported solid oxide fuel cellscitations
- 2013Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cellscitations
- 2011La-doped SrTiO3 as anode material for IT-SOFCcitations
- 2010Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation
- 2009Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO3 as anode material for IT-SOFCscitations
- 2009Intermediate temperature SOFC anode component based on A-site deficient La-doped SrTiO3citations
- 2006Disruption of extended defects in solid oxide fuel cell anodes for methane oxidationcitations
- 2006Disruption of extended defects in solid oxide fuel cell anodes for methane oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cells
Abstract
La0.2Sr0.25Ca0.45TiO3 is a carefully selected composition to provide optimal ceramic and electrical characteristics for use as an anode support in solid oxide fuel cells. In this study we focus on the process optimization and characterization of A-site deficient perovskite, La0.2Sr0.25Ca0.45TiO3 (LSCTA-), powders prepared via a solution method to be integrated into the SOFC anode supports. A Pechini method has been applied to successfully produce single phase perovskite at 900 °C. Processing conditions have been modified to yield a powder that displays a similar sintering profile to commercial yttria stabilised zirconia. The conductivity behavior of porous bodies under redox has been investigated showing a 2 stage process in both oxidation and reduction cycling that exhibits strong reversibility. For the reduction process, addition of impregnated ceria reduces the onset delay period and increases the apparent rate constant, k values, by 30–50% for both stages. The addition of ceria had less influence on the oxidation kinetics, although the conductivity values of both oxidised and reduced porous bodies were enhanced. Graphical abstract: Preparation via a solution method of La0.2Sr0.25Ca0.45TiO3 and its characterization for anode supported solid oxide fuel cells ; Peer reviewed