Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fischer, Marion

  • Google
  • 1
  • 7
  • 62

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes62citations

Places of action

Chart of shared publication
Schulze, Agnes
1 / 2 shared
Thomas, Isabell
1 / 1 shared
Went, Marco
1 / 1 shared
Marquardt, Barbara
1 / 1 shared
Werner, Carsten
1 / 45 shared
Maitz, Manfred F.
1 / 3 shared
Zimmermann, Ralf
1 / 11 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Schulze, Agnes
  • Thomas, Isabell
  • Went, Marco
  • Marquardt, Barbara
  • Werner, Carsten
  • Maitz, Manfred F.
  • Zimmermann, Ralf
OrganizationsLocationPeople

article

Permanent surface modification by electron-beam-induced grafting of hydrophilic polymers to PVDF membranes

  • Schulze, Agnes
  • Thomas, Isabell
  • Went, Marco
  • Fischer, Marion
  • Marquardt, Barbara
  • Werner, Carsten
  • Maitz, Manfred F.
  • Zimmermann, Ralf
Abstract

<p>Electron-beam-induced grafting of hydrophilic polymers was applied to modify PVDF membranes for biomedical applications. Grafting was performed by immersing the membrane in an aqueous solution of different hydrophilic polymers followed by electron-beam irradiation. The two polymer types are able to cross-link by recombination of adjacent radicals formed via the irradiation. Although the untreated membrane was already quite hydrophilic, the modification resulted in even lower water contact angles at the membrane surface indicating improved water wettability. The presence of different functional groups originating from the hydrophilic polymers was detected on the membrane surface by electrokinetic measurements. SEM investigations as well as porosimetry experiments showed that the grafted hydrophilic polymer layer is very thin; therefore, the membrane pore structure is not negatively affected. Soxhlet extraction revealed the stability of the modification for selected polymers: surface contact angles were comparable after extraction, and total organic carbon investigation of the extraction water revealed no significant loss of organic material. Investigated mechanical properties confirmed an increased stability due to cross-linking of the polymers. Undesired hemolysis was not detected with hemocompatibility tests, and coagulation was decreased with selected hydrophilic polymers. Because of the absence of any toxic material during surface modification and the high stability of the product, this method is believed to be suitable for the modification of membranes for medical applications, e.g. for improving the hemo- or biocompatibility.</p>

Topics
  • impedance spectroscopy
  • pore
  • surface
  • polymer
  • Carbon
  • scanning electron microscopy
  • experiment
  • biocompatibility
  • porosimetry
  • Soxhlet extraction