People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Palmans, Ara Anja
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (36/36 displayed)
- 2024Enhanced Efficiency of Pd(0)-Based Single Chain Polymeric Nanoparticles for in Vitro Prodrug Activation by Modulating the Polymer’s Microstructurecitations
- 2023Dynamic covalent networks with tunable dynamicity by mixing acylsemicarbazides and thioacylsemicarbazidescitations
- 2022Elucidating the Stability of Single-Chain Polymeric Nanoparticles in Biological Media and Living Cellscitations
- 2022Developing Pd(ii) based amphiphilic polymeric nanoparticles for pro-drug activation in complex mediacitations
- 2022Spectrally PAINTing a Single Chain Polymeric Nanoparticle at Super-Resolutioncitations
- 2021Compartmentalized Polymers for Catalysis in Aqueous Mediacitations
- 2021Consequences of Chirality in Directing the Pathway of Cholesteric Helix Inversion of π-Conjugated Polymers by Lightcitations
- 2020Long-lived charge-transfer state from B−N frustrated Lewis pairs enchained in supramolecular copolymerscitations
- 2020Tuning polymer properties of non-covalent crosslinked PDMS by varying supramolecular interaction strengthcitations
- 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizationscitations
- 2019Detailed approach to investigate thermodynamically controlled supramolecular copolymerizations
- 2019Stereocomplexes of discrete, isotactic lactic acid oligomers conjugated with oligodimethylsiloxanescitations
- 2019Future of supramolecular copolymers unveiled by reflecting on covalent copolymerizationcitations
- 2019Equilibrium model for supramolecular copolymerizationscitations
- 2018Supramolecular block copolymers under thermodynamic controlcitations
- 2018Supramolecular block copolymers under thermodynamic control
- 2017Self-assembly of hydrogen-bonding gradient copolymerscitations
- 2017Self-assembly of hydrogen-bonding gradient copolymers:sequence control via tandem living radical polymerization with transesterificationcitations
- 2015The coil-to-globule transition of single-chain polymeric nanoparticles with a chiral internal secondary structurecitations
- 2015Modular synthetic platform for the construction of functional single-chain polymeric nanoparticles:from aqueous catalysis to photosensitizationcitations
- 2015Modular synthetic platform for the construction of functional single-chain polymeric nanoparticlescitations
- 2014Consequences of block sequence on the orthogonal folding of triblock copolymerscitations
- 2014The effect of pendant benzene-1,3,5-tricarboxamides in the middle block of ABA triblock copolymers : synthesis and mechanical propertiescitations
- 2014Folding triblock copolymers
- 2014Folding polymers with pendant hydrogen bonding motifs in water : the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticles
- 2014Folding polymers with pendant hydrogen bonding motifs in water : the effect of polymer length and concentration on the shape and size of single-chain polymeric nanoparticlescitations
- 2013Sticky Supramolecular Grafts Stretch Single Polymer Chainscitations
- 2013Orthogonal self-assembly in folding block copolymerscitations
- 2012Benzene-1,3,5-tricarboxamide : a versatile ordering moiety for supramolecular chemistry
- 2012Benzene-1,3,5-tricarboxamide : a versatile ordering moiety for supramolecular chemistrycitations
- 2010Hydrolases part I : enzyme mechanism, selectivity and control in the synthesis of well-defined polymerscitations
- 2007Supramolecular copolyesters with tunable properties
- 2007Supramolecular copolyesters with tunable propertiescitations
- 2007Poly(caprolactone-co-oxo-crown ether)-based poly(urethane)urea for soft tissue engineering applicationscitations
- 2006Oxo-crown-ethers as comonomers for tuning polyester properties
- 2006Oxo-crown-ethers as comonomers for tuning polyester propertiescitations
Places of action
Organizations | Location | People |
---|
article
The effect of pendant benzene-1,3,5-tricarboxamides in the middle block of ABA triblock copolymers : synthesis and mechanical properties
Abstract
The synthesis and mechanical properties of ABA triblock copolymers containing benzene-1,3,5-tricarboxamide (BTA) moieties in the middle block are described. The triblock architecture was achieved by sequential polymerization of different monomers by atom-transfer radical polymerization (ATRP). The ABA triblock copolymer has a soft-hard-soft block sequence, in which the "A" block consists of soft poly(methyl acrylate), while the "B" block is a random copolymer of isobornyl methacrylate with 20 mol% of propargyl methacrylate partially functionalized with peripheral BTA groups. The pendent BTAs self-assemble into helical aggregates through lateral hydrogen-bond formation. Thermal and mechanical analyses indicated that the Young's modulus is enhanced by the BTAs. AFM images revealed that BTA self-assembly has dramatic influence on the nanoscopic ordered structure. The morphology of the triblock copolymer without BTAs consisted of hard, isolated domains embedded in a soft matrix. The copolymer containing BTAs appears as a continuous, disorganized morphology with nanoscopic domain sizes. This morphological difference presumably influences the Young's modulus. Ductility (i.e., necking) was only observed in the polymer containing BTAs. From these investigations, we conclude that introducing BTA in the hard-midblock results in intermolecular physical crosslinks, and the morphological characteristics translate to improved strength as reflected by the modulus. This journal is © The Royal Society of Chemistry.