People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Micheli, Giovanni De
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Highly-stable Li+ ion-selective electrodes based on noble metal nanostructured layers as solid-contacts.citations
- 2016Platinum nanopetal-based potassium sensors for acute cell death monitoringcitations
- 2014Direct and selective synthesis of a wide range of carbon nanomaterials by CVD at CMOS compatible temperatures
- 2014High-performance multipanel biosensors based on a selective integration of nanographite petals.citations
- 2013Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes.citations
Places of action
Organizations | Location | People |
---|
article
Direct growth of nanotubes and graphene nanoflowers on electrochemical platinum electrodes.
Abstract
Multi-walled carbon nanotubes and graphene nanoflowers were grown by a catalytic chemical vapor deposition process on metal surfaces. Electrodeposition was used as a versatile technique to obtain three different iron catalyst coatings on platinum microelectrodes. The influence of growth parameters on carbon deposits was investigated. Characterization was carried out by scanning electron microscopy and Raman spectroscopy. A chemical treatment in sulphuric acid produced an increased voltammetric background current. In Raman spectra, the effect of the chemical treatment is seen as a more pronounced sp3 hybridisation mode of C resulting from surface functionalization of the C nanomaterials. Overall, the hybrid electrodes we produced exhibit a promising performance for oxidase-based array biosensors. Therefore, our study opens the possibility of integrating the hybrid electrodes in biochip applications.