People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Baaziz, Walid
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Aging of Pd under tritium: Influence of 3He generation and associated mechanismscitations
- 2022Liquid Processing of Bismuth–Silica Nanoparticle/Aluminum Matrix Nanocomposites for Heat Storage Applicationscitations
- 20210D/2D Heterostructures Vertical Single Electron Transistorcitations
- 20210D/2D Heterostructures Vertical Single Electron Transistorcitations
- 2021New Phenotype and Mineralization of Biogenic Iron Oxide in Magnetotactic Bacteriacitations
- 2020Quantitative Analysis of the Specific Absorption Rate Dependence on the Magnetic Field Strength in ZnxFe3−xO4 Nanoparticlescitations
- 2020Polymer-derived Si3N4 nanofelts for flexible, high temperature, lightweight and easy-manufacturable super-thermal insulatorscitations
- 2019The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterizationcitations
- 2019The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by co-precipitation method: Structural, magnetic and hyperthermia characterizationcitations
- 2019Versatile Roles of Metal Species in Carbon Nanotube Templates for the Synthesis of Metal–Zeolite Nanocomposite Catalystscitations
- 2019Macroscopic graphite felt containing palladium catalyst for liquid-phase hydrogenation of cinnamaldehydecitations
- 2018Effect of reaction environment and in situ formation of the precursor on the composition and shape of iron oxide nanoparticles synthesized by the thermal decomposition methodcitations
- 2014Design of Covalently Functionalized Carbon Nanotubes Filled with Metal Oxide Nanoparticles for Imaging, Therapy, and Magnetic Manipulationcitations
- 2014Magnetic Iron Oxide Nanoparticles: Reproducible Tuning of the Size and Nanosized-Dependent Composition, Defects, and Spin Cantingcitations
- 2014Tuning of Synthesis Conditions by Thermal Decomposition toward Core–Shell Co x Fe 1– x O@Co y Fe 3– y O 4 and CoFe 2 O 4 Nanoparticles with Spherical and Cubic Shapescitations
- 2013A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticlescitations
- 2013A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticlescitations
- 2013Carbon nanotube channels selectively filled with monodispersed Fe3-xO4 nanoparticlescitations
- 2013High Exchange Bias in Fe 3−δ O 4 @CoO Core Shell Nanoparticles Synthesized by a One-Pot Seed-Mediated Growth Methodcitations
Places of action
Organizations | Location | People |
---|
article
A single-stage functionalization and exfoliation method for the production of graphene in water: stepwise construction of 2D-nanostructured composites with iron oxide nanoparticles
Abstract
A practically simple top-down process for the exfoliation of graphene (GN) and few-layer graphene (FLG) from graphite is described. We have discovered that a biocompatible amphiphilic pyrene-based hexahistidine peptide is able to exfoliate, functionalize, and dissolve few layer graphene flakes in pure water under exceptionally mild, sustainable and virtually innocuous low intensity cavitation conditions. Large area functionalized graphene flakes with the hexahistidine oligopeptide (His(6)-TagGN = His(6)@GN) have been produced efficiently at room temperature and characterized by TEM, Raman, and UV spectroscopy. Conductivity experiments carried out on His(6)-TagGN samples revealed superior electric performances as compared to reduced graphene oxide (rGO) and non-functionalized graphene, demonstrating the non-invasive features of our non-covalent functionalization process. We postulated a rational exfoliation mechanism based on the intercalation of the peptide amphiphile under cavitational chemistry. We also demonstrated the ability of His(6)-TagGN nanoassemblies to self-assemble spontaneously with inorganic iron oxide nanoparticles generating magnetic two-dimensional (2D) His(6)-TagGN/Fe3O4 nanocomposites under mild and non-hydrothermal conditions. The set of original experiments described here open novel perspectives in the facile production of water dispersible high quality GN and FLG sheets that will improve and facilitate the interfacing, processing and manipulation of graphene for promising applications in catalysis, nanocomposite construction, integrated nanoelectronic devices and bionanotechnology.