People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mitchell, Arnan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2021Fringe analysis approach for imaging surface undulations on technical surfacescitations
- 2020Optical frequency comb generation using low stress CMOS compatible reactive sputtered silicon nitride waveguidescitations
- 2020Optical frequency comb generation using low stress reactive sputtered silicon nitride waveguides
- 2019CMOS-compatible, plasma beam assisted reactive magnetron sputtered silicon nitride films for photonic integrated circuits
- 2019Post processing dispersion trimming for on-chip mid-infrared supercontinuum generation
- 2019Low stress, anomalous dispersive silicon nitride waveguides fabricated by reactive sputtering
- 2019Low loss CMOS-compatible silicon nitride photonics utilizing reactive sputtered thin filmscitations
- 2017Liquid metal enabled microfluidicscitations
- 2017Compact Brillouin devices through hybrid integration on siliconcitations
- 2015Creation of Liquid Metal 3D Microstructures Using Dielectrophoresiscitations
- 2014Spectral and angular characteristics of dielectric resonator metasurface at optical frequenciescitations
- 2013Liquid metal marblescitations
- 2013Liquid metal marblescitations
- 2013Electrochemically induced actuation of liquid metal marblescitations
Places of action
Organizations | Location | People |
---|
article
Electrochemically induced actuation of liquid metal marbles
Abstract
<p>Controlled actuation of soft objects with functional surfaces in aqueous environments presents opportunities for liquid phase electronics, novel assembled super-structures and unusual mechanical properties. We show the extraordinary electrochemically induced actuation of liquid metal droplets coated with nanoparticles, so-called "liquid metal marbles". We demonstrate that nanoparticle coatings of these marbles offer an extra dimension for affecting the bipolar electrochemically induced actuation. The nanoparticles can readily migrate along the surface of liquid metals, upon the application of electric fields, altering the capacitive behaviour and surface tension in a highly asymmetric fashion. Surprising actuation behaviours are observed illustrating that nanoparticle coatings can have a strong effect on the movement of these marbles. This significant novel phenomenon, combined with unique properties of liquid metal marbles, represents an exciting platform for enabling diverse applications that cannot be achieved using rigid metal beads.</p>