Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hancock, Cathryn

  • Google
  • 3
  • 14
  • 99

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2013Investigation into the effect of Si doping on the performance of Sr1−yCayMnO3−δ SOFC cathode materials25citations
  • 2012Low temperature fluorination of Sr3Fe2O7-x with polyvinylidine fluoride: An X-ray powder diffraction and Mossbauer spectroscopy study26citations
  • 2011Structure and magnetic properties of the cubic oxide fluoride BaFeO2F48citations

Places of action

Chart of shared publication
Keenan, Philip
1 / 1 shared
Kemp, T.
1 / 1 shared
Losilla, E.
1 / 1 shared
Porras, Jose
1 / 3 shared
Slater, Peter
3 / 45 shared
Hanna, John
1 / 5 shared
Herranz, T.
1 / 2 shared
Marco, Jf
1 / 5 shared
Berry, Frank
2 / 10 shared
Coomer, Fc
1 / 3 shared
Helgason, O.
1 / 4 shared
Wright, Adrian
1 / 10 shared
Moore, Ea
1 / 3 shared
Thomas, Mf
1 / 3 shared
Chart of publication period
2013
2012
2011

Co-Authors (by relevance)

  • Keenan, Philip
  • Kemp, T.
  • Losilla, E.
  • Porras, Jose
  • Slater, Peter
  • Hanna, John
  • Herranz, T.
  • Marco, Jf
  • Berry, Frank
  • Coomer, Fc
  • Helgason, O.
  • Wright, Adrian
  • Moore, Ea
  • Thomas, Mf
OrganizationsLocationPeople

article

Investigation into the effect of Si doping on the performance of Sr1−yCayMnO3−δ SOFC cathode materials

  • Hancock, Cathryn
  • Keenan, Philip
  • Kemp, T.
  • Losilla, E.
  • Porras, Jose
  • Slater, Peter
  • Hanna, John
Abstract

<p>In this paper we report the successful incorporation of silicon intoSr<sub>1−y</sub>Ca<sub>y</sub>MnO<sub>3−δ</sub> perovskite materials for potential applications in cathodes for solid oxide fuel cells. The Si substitution onto the B site of a <sup>29</sup>Si enriched Sr<sub>1−y</sub>Ca<sub>y</sub>Mn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub> perovskite system is confirmed by <sup>29</sup>Si MAS NMR measurements at low B<sub>0</sub> field. The very large paramagnetic shift (∼3000–3500 ppm) and anisotropy (span ∼4000 ppm) suggests that the Si<sup>4+</sup> species experiences both Fermi contact and electron-nuclear dipolar contributions to the paramagnetic interaction with the Mn<sup>3+/4+</sup> centres. An improvement in the conductivity is observed for low level Si doping, which can be attributed to two factors. The first of these is attributed to the tetrahedral coordination preference of Si leading to the introduction of oxide ion vacancies, and hence a partial reduction of Mn<sup>4+</sup> to give mixed valence Mn. Secondly, for samples with high Sr levels, the undoped systems adopt a hexagonal perovskite structure containing face sharing of MnO<sub>6</sub> octahedra, while Si doping is shown to help to stabilise the more highly conducting cubic perovskite containing corner linked octahedra. The level of Si,<em> x</em>, required to stabilise the cubic Sr<sub>1−y</sub>Ca<sub>y</sub>Mn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub> perovskite in these cases is shown to decrease with increasing Ca content; thus cubic symmetry is achieved at <em>x</em> = 0.05 for the Sr<sub>0.5</sub>Ca<sub>0.5</sub>Mn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub> series; <em>x</em> = 0.075 for Sr<sub>0.7</sub>Ca<sub>0.3</sub>Mn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub>; <em>x</em> = 0.10 for Sr<sub>0.8</sub>Ca<sub>0.2</sub>Mn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub>; and <em>x</em> = 0.15 for SrMn<sub>1−x</sub>Si<sub>x</sub>O<sub>3−δ</sub>. Composites with 50% Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> were examined on dense Ce<sub>0.9</sub>Gd<sub>0.1</sub>O<sub>1.95</sub> pellets. For all series an improvement in the area specific resistances (ASR) values is observed for the Si-doped samples. Thus these preliminary results show that silicon can be incorporated into perovskite cathode materials and can have a beneficial effect on the performance.</p>

Topics
  • perovskite
  • impedance spectroscopy
  • composite
  • Silicon
  • Nuclear Magnetic Resonance spectroscopy