People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Halme, Janne
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Efficiency limits and design principles for multi-junction coloured photovoltaicscitations
- 2019Inkjet-Printed Three-Dimensional Colloidal Photonic Crystals for Structural Coloration of Solar Cells
- 2018Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materialscitations
- 2018Application of dye-sensitized and perovskite solar cells on flexible substratescitations
- 2014Low Cost Ferritic Stainless Steel in Dye Sensitized Solar Cells with Cobalt Complex Electrolytecitations
- 2013High performance low temperature carbon composite catalysts for flexible dye sensitized solar cellscitations
- 2010Stability of Dye Solar Cells with Photoelectrode on Metal Substratescitations
- 2009Segmented Cell Design for Improved Factoring of Aging Effects in Dye Solar Cellscitations
- 2009Nanostructured dye solar cells on flexible substrates-Reviewcitations
- 2009Performance limiting factors in flexible dye solar cells
Places of action
Organizations | Location | People |
---|
article
High performance low temperature carbon composite catalysts for flexible dye sensitized solar cells
Abstract
Roll-to-roll manufacturing of dye sensitized solar cells (DSSCs) requires efficient and low cost materials that adhere well on the flexible substrates used. In this regard, different low temperature carbon composite counter electrode (CE) catalyst ink formulations for flexible DSSCs were developed that can be simply and quickly coated on plastic substrates and dried below 150 degrees C. The CEs were investigated in terms of photovoltaic performance in DSSCs by current-voltage measurements, mechanical adhesion properties by bending and tape tests, electro-catalytic performance by electrochemical impedance spectroscopy and microstructure by electron microscopy. In the bending and tape tests, PEDOT-carbon composite catalyst layers exhibited higher elasticity and better adhesion on all the studied substrates (ITO-PET and ITO-PEN plastic, and FTO-glass), compared to a binder free carbon composite and a TiO2 binder enriched carbon composite, and showed lower charge transfer resistance (1.5-3 Omega cm(2)) than the traditional thermally platinized CE (5 Omega cm(2)), demonstrating better catalytic performance for the tri-iodide reduction reaction. Also the TiO2 binder enriched carbon composite showed good catalytic characteristics and relatively good adhesion on ITO-PET, but on ITO-PEN its adhesion was poor. A DSSC with the TiO2 binder enriched catalyst layer reached 85% of the solar energy conversion efficiency of the reference DSSC based on the traditional thermally platinized CE. Based on the aforementioned characteristics, these carbon composites are promising candidates for replacing the platinum catalyst in a high volume roll-to-roll manufacturing process of DSSCs. ; Peer reviewed