Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Su, D.

  • Google
  • 7
  • 42
  • 630

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Highly oriented layers of the three‐dimensional semiconductor CdTe on the two‐dimensional layered semiconductors MoTe₂ and WSe₂citations
  • 2017Metal-Free Oxidation of Glycerol over Nitrogen-Containing Carbon Nanotubes55citations
  • 2013Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction30citations
  • 2011Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlationscitations
  • 2011Metallic and Insulating Oxide Interfaces Controlled by Electronic Correlations223citations
  • 2010In Situ Formation of Au-Pd Alloyed Nanoparticles during Liquid Phase Oxidation of Alcohols51citations
  • 2006Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols271citations

Places of action

Chart of shared publication
Jaegermann, Wolfram
1 / 14 shared
Tomm, Y.
1 / 2 shared
Pettenkofer, C.
1 / 5 shared
Klein, Andreas
1 / 25 shared
Löher, T.
1 / 6 shared
Khavryuchenko, O.
1 / 2 shared
Villa, A.
3 / 20 shared
Gupta, N.
1 / 8 shared
Sasaki, K.
1 / 8 shared
Smith, B. H.
1 / 1 shared
Kaneko, K.
1 / 7 shared
Darling, R. M.
1 / 1 shared
Odell, J. H.
1 / 1 shared
Humbert, M. P.
1 / 1 shared
Protsailo, L.
1 / 2 shared
Marzullo, J.
1 / 1 shared
Guerrero, S.
1 / 2 shared
Eom, Chang-Beom
1 / 6 shared
Lee, S.
1 / 37 shared
Tsymbal, Evgeny Y.
1 / 6 shared
Folkman, C. M.
2 / 2 shared
Baek, S. H.
2 / 2 shared
Pan, X. Q.
2 / 10 shared
Niranjan, Manish K.
1 / 10 shared
Rzchowski, M. S.
2 / 3 shared
Jang, H. W.
2 / 3 shared
Felker, D. A.
2 / 2 shared
Janicka, K.
2 / 2 shared
Bark, C. W.
2 / 4 shared
Nelson, C. T.
2 / 4 shared
Fong, D. D.
2 / 3 shared
Wang, Y.
2 / 134 shared
Zhang, Y.
2 / 149 shared
Zhu, Y.
2 / 19 shared
Niranjan, M. K.
1 / 1 shared
Eom, C. B.
1 / 4 shared
Tsymbal, E. Y.
1 / 5 shared
Prati, L.
2 / 18 shared
Spontoni, P. R.
1 / 1 shared
Wang, D.
2 / 42 shared
Porta, F.
1 / 3 shared
Dimitratos, N.
1 / 7 shared
Chart of publication period
2021
2017
2013
2011
2010
2006

Co-Authors (by relevance)

  • Jaegermann, Wolfram
  • Tomm, Y.
  • Pettenkofer, C.
  • Klein, Andreas
  • Löher, T.
  • Khavryuchenko, O.
  • Villa, A.
  • Gupta, N.
  • Sasaki, K.
  • Smith, B. H.
  • Kaneko, K.
  • Darling, R. M.
  • Odell, J. H.
  • Humbert, M. P.
  • Protsailo, L.
  • Marzullo, J.
  • Guerrero, S.
  • Eom, Chang-Beom
  • Lee, S.
  • Tsymbal, Evgeny Y.
  • Folkman, C. M.
  • Baek, S. H.
  • Pan, X. Q.
  • Niranjan, Manish K.
  • Rzchowski, M. S.
  • Jang, H. W.
  • Felker, D. A.
  • Janicka, K.
  • Bark, C. W.
  • Nelson, C. T.
  • Fong, D. D.
  • Wang, Y.
  • Zhang, Y.
  • Zhu, Y.
  • Niranjan, M. K.
  • Eom, C. B.
  • Tsymbal, E. Y.
  • Prati, L.
  • Spontoni, P. R.
  • Wang, D.
  • Porta, F.
  • Dimitratos, N.
OrganizationsLocationPeople

article

Core-shell catalysts consisting of nanoporous cores for oxygen reduction reaction

  • Sasaki, K.
  • Smith, B. H.
  • Kaneko, K.
  • Su, D.
  • Darling, R. M.
  • Odell, J. H.
  • Humbert, M. P.
  • Protsailo, L.
  • Marzullo, J.
  • Guerrero, S.
Abstract

A comprehensive experimental study was conducted on the dealloying of PdNi6 nanoparticles under various conditions. A two-stage dealloying protocol was developed to leach >95% of Ni while minimizing the dissolution of Pd. The final structure of the dealloyed particle was strongly dependent on the acid used and temperature. When H2SO4 and HNO 3 solutions were used in the first stage of dealloying, solid and porous particles were generated, respectively. The porous particles have a 3-fold higher electrochemical surface area per Pd mass than the solid ones. The dealloyed PdNi6 nanoparticles were then used as a core material for the synthesis of core-shell catalysts. These catalysts were synthesized in gram-size batches and involved Pt displacement of an underpotentially deposited (UPD) Cu monolayer. The resulting materials were characterized by scanning transmission electron microscopy (STEM) and in situ X-ray diffraction (XRD). The oxygen reduction reaction (ORR) activity of the core-shell catalysts is 7-fold higher than the state-of-the-art Pt/C. The high activity was confirmed by a more than 40 mV improvement in fuel cell performance with a Pt loading of 0.1 mg cm-2 by using the core-shell catalysts. © the Owner Societies 2013.

Topics
  • nanoparticle
  • porous
  • impedance spectroscopy
  • surface
  • x-ray diffraction
  • Oxygen
  • transmission electron microscopy