Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gandhi, Keyur

  • Google
  • 2
  • 7
  • 40

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Enhancement of light coupling to solar cells using plasmonic structures.citations
  • 2013Organic solar cells with plasmonic layers formed by laser nanofabrication40citations

Places of action

Chart of shared publication
Adikaari, A. A. D. T.
1 / 1 shared
Han, Seungjin
1 / 1 shared
Kymakis, Emmanuel
1 / 14 shared
Henley, Simon J.
1 / 2 shared
Silva, S. Ravi P.
1 / 17 shared
Stratakis, Emmanuel
1 / 15 shared
Beliatis, Michail J.
1 / 5 shared
Chart of publication period
2015
2013

Co-Authors (by relevance)

  • Adikaari, A. A. D. T.
  • Han, Seungjin
  • Kymakis, Emmanuel
  • Henley, Simon J.
  • Silva, S. Ravi P.
  • Stratakis, Emmanuel
  • Beliatis, Michail J.
OrganizationsLocationPeople

article

Organic solar cells with plasmonic layers formed by laser nanofabrication

  • Adikaari, A. A. D. T.
  • Han, Seungjin
  • Kymakis, Emmanuel
  • Henley, Simon J.
  • Gandhi, Keyur
  • Silva, S. Ravi P.
  • Stratakis, Emmanuel
  • Beliatis, Michail J.
Abstract

A method for the synthesis of metal nanoparticle coatings for plasmonic solar cells which can meet large scale industrial demands is demonstrated. A UV pulsed laser is utilized to fabricate Au and Ag nanoparticles on the surface of polymer materials which form the substrates for plasmonic organic photovoltaic devices to enhance their performance. Control of the particles’ size and density is demonstrated. The optical and electrical effects of these embedded particles on the power conversion efficiency are examined rigorously using both experimental and computer simulation. Gold nanoparticles of particular size and spatial distribution enhance the device efficiency. Based on our findings, we propose design considerations for utilizing the entire AM1.5 spectrum using plasmonic structures towards enhancing the efficiency of polymer solar cells using broad spectrum plasmonics.

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • surface
  • polymer
  • simulation
  • gold
  • power conversion efficiency