People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Geitner, Nicholas K.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2015PAMAM dendrimers and graphene: materials for removing aromatic contaminants from watercitations
- 2013Exploiting the physicochemical properties of dendritic polymers for environmental and biological applicationscitations
- 2012Understanding dendritic polymer-hydrocarbon interactions for oil dispersioncitations
Places of action
Organizations | Location | People |
---|
document
Exploiting the physicochemical properties of dendritic polymers for environmental and biological applications
Abstract
<p>In this perspective we first examine the rich physicochemical properties of dendritic polymers for hosting cations, anions, and polyaromatic hydrocarbons. We then extrapolate these conceptual discussions to the use of dendritic polymers in humic acid antifouling, oil dispersion, copper sensing, and fullerenol remediation. In addition, we review the state-of-the-art of dendrimer research and elaborate on its implications for water purification, environmental remediation, nanomedicine, and energy harvesting.</p>