People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Chick C.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Phase behavior and substitution limit of mixed cesium-formamidinium lead triiodide perovskitescitations
- 2014Determining hydrogen positions in crystal engineered organic molecular complexes by joint neutron powder and single crystal X-ray diffractioncitations
- 2012Probing hydrogen positions in hydrous compounds:information from parametric neutron powder diffraction studiescitations
- 2012Probing hydrogen positions in hydrous compoundscitations
- 2010Structural isotope effects in metal hydrides and deuteridescitations
- 2010The kinetics of bulk hydration of the disaccharides α-lactose and trehalose by in situ neutron powder diffractioncitations
- 2009Crystallography of hydrogen-containing compoundscitations
- 2009Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffractioncitations
- 2009In situ neutron powder diffraction and structure determination in controlled humiditiescitations
- 2002Variable temperature powder neutron diffraction study of SmNiO3 through its M-I transition using a combination of samarium and nickel isotopic substitutioncitations
Places of action
Organizations | Location | People |
---|
article
Determining hydrogen positions in crystal engineered organic molecular complexes by joint neutron powder and single crystal X-ray diffraction
Abstract
The potential of neutron powder diffraction (NPD) to provide vital information on the determination of accurate hydrogen positions in organic molecular crystals is demonstrated through the study of a series of hydrogen bonded molecular complexes with relevance in crystal engineering. By studying complexes designed to contain short, strong hydrogen bonds, the findings are shown to be of particular importance in the study of proton transfer, and the often critical distinction between neutral complexes and salts in these molecular materials. The use of combined NPD and single crystal X-ray diffraction is shown to be particularly potent in this area.