People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Plana, Daniela
Keele University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2017Real-Time Tracking of Metal Nucleation via Local Perturbation of Hydration Layerscitations
- 2016A Synthetic Route for the Effective Preparation of Metal Alloy Nanoparticles and Their Use as Active Electrocatalystscitations
- 2015Surface Activation of Pt Nanoparticles Synthesised by "Hot Injection" in the Presence of Oleylaminecitations
- 2015Growth of Epitaxial Pt<inf>1-x</inf>Pb<inf>x</inf> Alloys by Surface Limited Redox Replacement and Study of Their Adsorption Propertiescitations
- 2013Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templatescitations
- 2012Electrocatalytic Properties of Strained Pd Nanoshells at Au Nanostructures: CO and HCOOH Oxidationcitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical crystallization of spatially organized copper microwire arrays within biomineralized (dentine) templates
Abstract
Macroporous biomineralized composites in the form of thin slices of tooth dentine were used to prepare oriented arrays of high aspect ratio copper microwires by template-directed electrochemical deposition. The coaligned wires were 1 to 4 mu m in thickness, and spatially separated throughout the dentine matrix to produce a metallized inorganic-organic biocomposite that exhibited ohmic conductivity and enhanced mechanical hardness. Utilization of porous biomineral templates for the crystallization of metallic microwire arrays offers a novel step towards the low temperature fabrication of multi-functional conductive hybrid composites with integrated bioinspired properties.