People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Perriman, Adam Willis
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Flax fibre reinforced alginate poloxamer hydrogelcitations
- 2023A rapid high throughput bioprinted colorectal cancer spheroid platform for in vitro drug- and radiation-responsecitations
- 2023Bienzymatic Generation of Interpenetrating Polymer Networked Engineered Living Materials with Shape Changing Propertiescitations
- 2023Design space and manufacturing of programmable 4D printed continuous flax fibre polylactic acid composite hygromorphscitations
- 2022The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) compositescitations
- 2022The Design of 4D-Printed Hygromorphscitations
- 2021Multiphase lattice metamaterials with enhanced mechanical performancecitations
- 2021Three-Dimensional Printable Enzymatically Active Plasticscitations
- 2020Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite nanofibrous Substratescitations
- 2020Cactus-based solids and bio-composites for energy dissipation in defence and biomedical applications.
- 2020Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materialscitations
- 2019A Composite Hydrogel Scaffold Permits Self‐Organization and Matrix Deposition by Cocultured Human Glomerular Cellscitations
- 2019Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTEcitations
- 2017Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterialscitations
- 2014Molecular dynamics simulations reveal a dielectric-responsive coronal structure in protein-polymer surfactant hybrid nanoconstructscitations
- 2012Polymer/nucleotide droplets as bio-inspired functional micro-compartmentscitations
- 2009Membrane stabilization and transformation in organoclay-vesicle hybrid constructscitations
Places of action
Organizations | Location | People |
---|
article
Polymer/nucleotide droplets as bio-inspired functional micro-compartments
Abstract
Using a range of physical methods, we describe the formation, structure, stability, physical properties and uptake behavior of condensed liquid micro-droplets prepared by electrostatically induced complexation of poly(diallyldimethylammonium) chloride (PDDA) and adenosine triphosphate (ATP) in water. Depending on the PDDA monomer: ATP molar ratio, positively charged or charge-neutral droplets are produced spontaneously by simple mixing. The former are typically 60-600 nm in mean size and stable with respect to sedimentation up to temperatures of 85 degrees C, whilst the latter grow into droplets several tens of micrometres in diameter that coalesce into a macroscopic coacervate phase. Coacervation is inhibited at pH values less than 3 and at high ionic strength, confirming the importance of charge interactions in droplet formation and stability. The droplet interior is structurally homogeneous with no surrounding membrane, comprises dynamically fluctuating domains of partially desolvated polymer/nucleotide complexes, and has a dielectric constant considerably lower than water. As a consequence, dye molecules, porphyrin macrocycles, inorganic nanoparticles or globular proteins can be sequestered from the external water phase into the droplets to produce PDDA/ATP droplets comprising supramolecular J-aggregate nanostructures, magnetically responsive deformable fluids, or soft compartments with potential storage and release properties.