Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Spahn, Peter

  • Google
  • 1
  • 7
  • 21

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Electrically conductive polymeric photonic crystals21citations

Places of action

Chart of shared publication
Baumberg, Jeremy J.
1 / 26 shared
Haines, Andrew I.
1 / 1 shared
Hellmann, G. Peter
1 / 1 shared
Goldberg-Oppenheimer, P.
1 / 1 shared
Zhao, Qibin
1 / 2 shared
Imai, Yusuke
1 / 2 shared
Snoswell, David R. E.
1 / 2 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Baumberg, Jeremy J.
  • Haines, Andrew I.
  • Hellmann, G. Peter
  • Goldberg-Oppenheimer, P.
  • Zhao, Qibin
  • Imai, Yusuke
  • Snoswell, David R. E.
OrganizationsLocationPeople

article

Electrically conductive polymeric photonic crystals

  • Baumberg, Jeremy J.
  • Haines, Andrew I.
  • Hellmann, G. Peter
  • Spahn, Peter
  • Goldberg-Oppenheimer, P.
  • Zhao, Qibin
  • Imai, Yusuke
  • Snoswell, David R. E.
Abstract

Electrically conductive polymeric 3D photonic crystals are prepared by the shear ordering of composites consisting of monodisperse core-shell polymer spheres and single-walled carbon nanotubes (SWNTs). Strong iridescent colour indicates that the highly ordered opaline structures are not disrupted by the presence of the conductive nanotube networks. Thermal annealing leads to a significant increase in the overall electrical conductivity of thin-film samples yielding DC conductivities of 10−4 S cm−1, with percolation thresholds of less than 0.4 wt% of SWNT. Such composites with open networks of carbon nanotubes held apart by lattices of hard spheres, give combined conductive properties and structural colour effects, within a tuneable viscoelastic medium, with many potential functional applications

Topics
  • polymer
  • Carbon
  • nanotube
  • laser emission spectroscopy
  • composite
  • annealing
  • electrical conductivity