People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Fletcher, Ashleigh
University of Strathclyde
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Advancing computational analysis of porous materials – modelling three-dimensional gas adsorption in organic gelscitations
- 2021Multi-stimulus linear negative expansion of a breathing M(O2CR)4-node MOFcitations
- 2020Adsorption of Pb(II) ions from contaminated water by 1, 2, 3, 4-butanetetracarboxylic acid-modified microcrystalline cellulosecitations
- 2018Fiber-reinforced organic polymer aerogel
- 2016Scalable continuous solvothermal synthesis of metal organic framework (MOF-5) crystalscitations
- 2015Coordination polymer flexibility leads to polymorphism and enables a crystalline solid-vapour reactioncitations
- 2013Chemical transformations of a crystalline coordination polymercitations
- 2013Effect of synthesis conditions on formation pathways of metal organic framework (MOF-5) Crystalscitations
- 2006Assembly of heterometallic clusters and coordination polymers by combining Mo-S-based clusters with Mn2+citations
- 2004Adsorption of gases and vapors on nanoporous Ni-2(4,4 '-bipyridine)(3)(NO3)(4) metal-organic framework materials templated with methanol and ethanol: Structural effects in adsorption kineticscitations
- 2001Adsorption dynamics of gases and vapors on the nanoporous metal organic framework material Ni-2(4,4 '-bipyridine)(3)(NO3)(4): guest modification of host sorption behaviorcitations
Places of action
Organizations | Location | People |
---|
article
Chemical transformations of a crystalline coordination polymer
Abstract
In its crystal structure the one-dimensional coordination polymer [Ag4(O2C(CF2)2CF3)4(TMP)3]n (1) (TMP = 2,3,5,6-tetramethylpyrazine) adopts a zig-zag arrangement in which pairs of silver(I) centers bridged by two fluorocarboxylate ligands are linked alternately via one or two neutral TMP ligands. This material can reversibly absorb small alcohols (ROH) in single crystal-to-single crystal transformations, despite the lack of porosity in the crystals, to yield a related material of formula [Ag4(O2C(CF2)2CF3)4(TMP)3(ROH)2]n (1-ROH). The process involves coordination/dissociation of the alcohol to/from the silver (I) centers and, in the process, insertion/deinsertion of the alcohol into one-quarter of the Ag-O bonds of coordination polymer. When in place, the alcohol molecule is also supported by formation of an O-H...O hydrogen bond to the partially dissociated carboxylate group. Upon further heating, 1 can release molecules of TMP into the vapor phase resulting in a separate chemical and structural transformation to yield a two-dimensional layered material of composition [Ag4(O2C(CF2)2CF3)4(TMP)2]n (2). This new transformation occurs via dissociation of Ag-N bonds upon ligand release and formation of new Ag-O bonds. The whole series of transformations has been followed in situ by single crystal and/or powder X-ray diffraction and studied by thermogravimetric analysis. As a mechanistic probe to explore transport within formally nonporous 1, gravimetric CO2 gas sorption/desorption has been conducted. It is proposed that transport of small molecules occurs through the fluorous layers in the crystal.