Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dev, K.

  • Google
  • 1
  • 2
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2012Effect of residual stresses in injection molded cyclic olefin copolymer during microfabrication5citations

Places of action

Chart of shared publication
Jena, R. K.
1 / 4 shared
Asundi, A.
1 / 1 shared
Chart of publication period
2012

Co-Authors (by relevance)

  • Jena, R. K.
  • Asundi, A.
OrganizationsLocationPeople

article

Effect of residual stresses in injection molded cyclic olefin copolymer during microfabrication

  • Dev, K.
  • Jena, R. K.
  • Asundi, A.
Abstract

Microfabrication using replication techniques such as hot embossing and injection molding followed by thermal sealing with a cover plate have been widely used in the large scale manufacturing of polymer based micro-devices for bio and chemical-MEMS (Micro Electro Mechanical Systems) applications. While several parameters are known to affect the integrity of microchannel replication, they have not been characterized and studied. These parameters include the influence of (i) in built residual stresses in substrate materials, made by injection molding, on replication fidelity during microfabrication using the hot embossing technique, (ii) sealing of injection molded microchips during thermal bonding and (iii) replication fidelity of annealed and unannealed substrates during hot embossing. This is the focus of the current work. Residual stresses were analysed using a grey-field polariscope and the fidelity of microreplication was characterized using a PLμ confocal microscope and a scanning electron microscope. It was found that the significant variation in replication fidelity of the injection molded substrate correlated well with the observed differences in the distribution of residual stresses. Good replication was obtained in regions with low residual stresses. The annealed substrate which had a low residual stress state with little chain orientation exhibited no variation in replication fidelity both along and across the flow direction of the injection molded substrate. Furthermore, the microchannels in the unannealed injection molding substrate exhibited significant distortion and deformation during subsequent thermal bonding. © 2012 The Royal Society of Chemistry.

Topics
  • impedance spectroscopy
  • injection molding
  • copolymer