People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vogt, Andrew
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2016Lithium-air battery cathode modification via an unconventional thermal method employing boraxcitations
- 2013Modular ambient temperature functionalization of carbon nanotubes with stimuli-responsive polymer strandscitations
- 2012Modular design of glyco-microspheres via mild pericyclic reactions and their quantitative analysiscitations
Places of action
Organizations | Location | People |
---|
article
Modular ambient temperature functionalization of carbon nanotubes with stimuli-responsive polymer strands
Abstract
Cyclopentadienyl end-capped poly(N-isopropylacrylamide) (PNIPAM-Cp, M n = 5400 g mol-1, PDI = 1.13) was synthesized via a combination of RAFT (Reversible Addition-Fragmentation Chain Transfer) polymerization and modular conjugation (characterized via Nuclear Magnetic Resonance (NMR) as well as Electrospray Ionization-Mass Spectrometry (ESI-MS)), and reacted with untreated Single Walled Carbon Nanotubes (SWCNTs) as dienophiles in a Diels-Alder reaction with PNIPAM-Cp (diene) at ambient temperature in the absence of any catalyst. The obtained stimuli-responsive hybrid materials display thermo-responsive behaviour evidenced via UV-VIS-spectroscopy and Dynamic Light Scattering (DLS). The grafting density of the PNIPAM chains at the surface of the SWCNTs was determined via Thermogravimetric Analysis (TGA), Elemental Analysis (EA) and X-ray Photoelectron Spectroscopy (XPS), to be close to 0.0288 chains per nm 2. © 2013 The Royal Society of Chemistry.