People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vopson, Melvin Marian
University of Portsmouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Diamagnetic coupling for magnetic tuning in nano-thin filmscitations
- 2019Sub-lattice polarization states in anti-ferroelectrics and their relaxation processcitations
- 2019Evidence of substrate roughness surface induced magnetic anisotropy in Ni80Fe20 flexible thin filmscitations
- 20171D core-shell magnetoelectric nanocomposites by template-assisted liquid phase depositioncitations
- 2012Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopycitations
- 2012Nanostructured p-n junctions for kinetic-to-electrical energy conversioncitations
- 2005Preparation of high moment CoFe films with controlled grain size and coercivitycitations
- 2005Deposition of polycrystalline thin films with controlled grain sizecitations
- 2005Grain size effects in metallic thin films prepared using a new sputtering technology
- 2004Novel sputtering technology for grain-size controlcitations
Places of action
Organizations | Location | People |
---|
article
Probing the local strain-mediated magnetoelectric coupling in multiferroic nanocomposites by magnetic field-assisted piezoresponse force microscopy
Abstract
The magnetoelectric effect that occurs in multiferroic materials is fully described by the magnetoelectric coupling coefficient induced either electrically or magnetically. This is rather well understood in bulk multiferroics, but it is not known whether the magnetoelectric coupling properties are retained at nanometre length scales in nanostructured multiferroics. The main challenges are related to measurement difficulties of the coupling at nanoscale, as well as the fabrication of suitable nano-multiferroic samples. Addressing these issues is an important prerequisite for the implementation of multiferroics in future nanoscale devices and sensors. In this paper we report on the local measurement of the magnetoelectric coefficient in bilayered ceramic nanocomposites from the variation in the longitudinal piezoelectric coefficient of the electrostrictive layer in the presence of a magnetic field. The experimental data were analyzed using a theoretical relationship linking the piezoelectric coefficient to the magneto-electric coupling coefficient. Our results confirm the presence of a measurable magnetoelectric coupling in bilayered nanocomposites constructed by a perovskite as the electrostrictive phase and two different ferrites (cubic spinel and hexagonal) as the magnetic phases. The reported experimental values as well as our theoretical approach are both in good agreement with previously published data for bulk and nanostructure magnetoelectric multiferroics.