Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gevorgyan, Suren A.

  • Google
  • 13
  • 84
  • 3654

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2016Comparison of ultramicrotomy and focused-ion-beam for the preparation of TEM and STEM cross section of organic solar cells12citations
  • 2014Interlaboratory indoor ageing of roll-to-roll and spin coated organic photovoltaic devices: Testing the ISOS tests18citations
  • 2014TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration33citations
  • 2013Comparison of Two Types of Vertically Aligned ZnO NRs for Highly Efficient Polymer Solar Cells16citations
  • 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices - the ISOS-3 inter-laboratory collaboration33citations
  • 2012Stability of Polymer Solar Cells1300citations
  • 2012Aesthetically Pleasing Conjugated Polymer: Fullerene Blends for Blue-Green Solar Cells Via Roll-to-Roll Processing53citations
  • 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration33citations
  • 2012TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices33citations
  • 2011Water and oxygen induced degradation of small molecule organic solar cells131citations
  • 2010Degradation Patterns in Water and Oxygen of an Inverted Polymer Solar Cell547citations
  • 2009A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies1170citations
  • 2009Water-Induced Degradation of Polymer Solar Cells Studied by (H2O)-O-18 Labeling275citations

Places of action

Chart of shared publication
Krebs, Frederik C.
12 / 103 shared
Simonsen, Søren Bredmose
1 / 26 shared
Corazza, Michael
2 / 5 shared
Thydén, Karl Tor Sune
1 / 20 shared
Gnaegi, Helmut
1 / 2 shared
Seraine, Caroline
1 / 1 shared
Herrero, Jose R.
1 / 1 shared
Blakesley, James C.
1 / 4 shared
Durrant, James R.
1 / 10 shared
Castro, Fernando A.
1 / 8 shared
Pozza, Alberto
1 / 1 shared
Law, Chun H.
1 / 1 shared
Müllejans, Harald
1 / 1 shared
Cros, Stéphane
1 / 7 shared
Trigo, Juan F.
1 / 1 shared
Dibb, George F. A.
1 / 1 shared
Tuladhar, Pabitra S.
1 / 1 shared
Guillén, Cecilia M.
1 / 1 shared
Morvillo, Pasquale
1 / 2 shared
Roca, Francesco
1 / 1 shared
Maglione, Maria G.
1 / 1 shared
Minarini, Carla
1 / 2 shared
Bardizza, Giorgio
1 / 2 shared
Madsen, Morten Vesterager
3 / 10 shared
Jørgensen, Mikkel
5 / 34 shared
Norrman, Kion
7 / 40 shared
Andreasen, Birgitta
5 / 19 shared
Hermenau, Martin
4 / 7 shared
Lira-Cantu, Monica
5 / 16 shared
Angmo, Dechan
1 / 24 shared
Gonzalez-Valls, Irene
1 / 1 shared
Reparaz, Juan Sebastian
1 / 7 shared
Tromholt, Thomas
1 / 7 shared
Subbiah, Jegadesan
1 / 5 shared
Choudhury, Kaushik Roy
1 / 1 shared
Reynolds, John R.
1 / 6 shared
Amb, Chad M.
1 / 2 shared
So, Franky
1 / 3 shared
Koldemir, Unsal
1 / 1 shared
Craig, Michael R.
1 / 1 shared
Riede, Moritz
1 / 4 shared
Leo, Karl
1 / 39 shared
Alstrup, Jan
1 / 2 shared
Chart of publication period
2016
2014
2013
2012
2011
2010
2009

Co-Authors (by relevance)

  • Krebs, Frederik C.
  • Simonsen, Søren Bredmose
  • Corazza, Michael
  • Thydén, Karl Tor Sune
  • Gnaegi, Helmut
  • Seraine, Caroline
  • Herrero, Jose R.
  • Blakesley, James C.
  • Durrant, James R.
  • Castro, Fernando A.
  • Pozza, Alberto
  • Law, Chun H.
  • Müllejans, Harald
  • Cros, Stéphane
  • Trigo, Juan F.
  • Dibb, George F. A.
  • Tuladhar, Pabitra S.
  • Guillén, Cecilia M.
  • Morvillo, Pasquale
  • Roca, Francesco
  • Maglione, Maria G.
  • Minarini, Carla
  • Bardizza, Giorgio
  • Madsen, Morten Vesterager
  • Jørgensen, Mikkel
  • Norrman, Kion
  • Andreasen, Birgitta
  • Hermenau, Martin
  • Lira-Cantu, Monica
  • Angmo, Dechan
  • Gonzalez-Valls, Irene
  • Reparaz, Juan Sebastian
  • Tromholt, Thomas
  • Subbiah, Jegadesan
  • Choudhury, Kaushik Roy
  • Reynolds, John R.
  • Amb, Chad M.
  • So, Franky
  • Koldemir, Unsal
  • Craig, Michael R.
  • Riede, Moritz
  • Leo, Karl
  • Alstrup, Jan
OrganizationsLocationPeople

article

TOF-SIMS investigation of degradation pathways occurring in a variety of organic photovoltaic devices – the ISOS-3 inter-laboratory collaboration

  • Uzunoğlu, Gülşah Y.
  • Krebs, Frederik C.
  • Kudret, Suleyman
  • Voroshazi, Eszter
  • Jørgensen, Mikkel
  • Germack, David S.
  • Galagan, Yulia
  • Zimmernann, Birger
  • Dam, Henrik Friis
  • Norrman, Kion
  • Lutsen, Laurence
  • Maes, Wouter
  • Vanderzande, Dirk
  • Rivaton, Agnès
  • Hösel, Markus
  • Rösch, Roland
  • Andreasen, Birgitta
  • Tanenbaum, David
  • Teran-Escobar, Gerardo
  • Lloyd, Matthew T.
  • Gevorgyan, Suren A.
  • Hermenau, Martin
  • Hoppe, Harald
  • Bundgaard, Eva
  • Würfel, Uli
  • Lira-Cantu, Monica
  • Andriessen, Ronn
  • Madsen, Morten Vesterager
Abstract

The present work is the fourth (and final) contribution to an inter-laboratory collaboration that was planned at the 3rd International Summit on Organic Photovoltaic Stability (ISOS-3). The collaboration involved six laboratories capable of producing seven distinct sets of OPV devices that were degraded under well-defined conditions in accordance with the ISOS-3 protocols. The degradation experiments lasted up to 1830 hours and involved more than 300 cells on more than 100 devices. The devices were analyzed and characterized at different points of their lifetimes by a large number of non-destructive and destructive techniques in order to identify specific degradation mechanisms responsible for the deterioration of the photovoltaic response. Work presented herein involves time-of-flight secondary ion mass spectrometry (TOF-SIMS) in order to study chemical degradation in-plane as well as in-depth in the organic solar cells. Various degradation mechanisms were investigated and correlated with cell performance. For example, photo-oxidation of the active material was quantitatively studied as a function of cell performance. The large variety of cell architectures used (some with and some without encapsulation) enabled valuable comparisons and important conclusions to be drawn on degradation behaviour. This comprehensive investigation of OPV stability has significantly advanced the understanding of degradation behaviour in OPV devices, which is an important step towards large scale application of organic solar cells.

Topics
  • impedance spectroscopy
  • experiment
  • spectrometry
  • selective ion monitoring
  • secondary ion mass spectrometry