People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hriljac, Joseph, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023One-pot synthesis of superparamagnetically modified zeolite chabazite for removal of Cs<sup>+</sup> from radioactively contaminated watercitations
- 2021Evolution of the Local Structure in the Sol-Gel Synthesis of Fe3C Nanostructurescitations
- 2020Nuclear wastewater decontamination by 3D printed hierarchical zeolite monolithscitations
- 2018Derivation of Transferable Pair Potentials and the Calculation of Intrinsic Defect Properties for Xenotimecitations
- 2018Transformation of Cs-IONSIV ® into a ceramic wasteform by hot isostatic pressingcitations
- 2016A Potential Wasteform for Cs Immobilizationcitations
- 2013Thermal Conversion of Cs-exchanged IONSIV IE-911 into a Novel Caesium Ceramic Wasteform by Hot Isostatic Pressingcitations
- 2012Pair distribution function-derived mechanism of a single-crystal to disordered to single-crystal transformation in a hemilabile metal–organic frameworkcitations
- 2012The effect of extra framework species on the intrinsic negative thermal expansion property of zeolites with the LTA topology.citations
- 2011Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphatecitations
- 2010Synthesis and structural characterisation using Rietveld and pair distribution function analysis of layered mixed titanium-zirconium phosphatescitations
- 2009Comparison of structural, microstructural, and electrical analyses of barium strontium titanate thin filmscitations
- 2007Hydrostatic low-range pressure applications of the Paris-Edinburgh cell utilizing polymer gaskets for diffuse X-ray scattering measurementscitations
- 2005Pillared clays as catalysts for hydrocracking of heavy liquid fuelscitations
- 2002Pressure-induced volume expansion of zeolites in the Natrolite familycitations
- 2002Oxygen-stabilised partial amorphization in a Zr₅₀Cu₅₀ alloycitations
- 2001Crystallisation of oxygen-stabilised amorphous phase in a Zr50Cu50 alloycitations
Places of action
Organizations | Location | People |
---|
article
Enhanced stability and local structure in biologically relevant amorphous materials containing pyrophosphate
Abstract
There is increasing evidence that amorphous inorganic materials play a key role in biomineralisation in many organisms, however the inherent instability of synthetic analogues in the absence of the complex in vivo matrix limits their study and clinical exploitation. To address this, we report here an approach that enhances long-term stability to >1 year of biologically relevant amorphous metal phosphates, in the absence of any complex stabilisers, by utilising pyrophosphates (P2O74-); species themselves ubiquitous in vivo. Ambient temperature precipitation reactions were employed to synthesise amorphous Ca2P2O7 center dot nH(2)O and Sr2P2O7 center dot nH(2)O (3.8 <n <4.2) and their stability and structure were investigated. Pair distribution functions (PDF) derived from synchrotron X-ray data indicated a lack of structural order beyond similar to 8 angstrom in both phases, with this local order found to resemble crystalline analogues. Further studies, including H-1 and P-31 solid state NMR, suggest the unusually high stability of these purely inorganic amorphous phases is partly due to disorder in the P-O-P bond angles within the P2O7 units, which impede crystallization, and to water molecules, which are involved in H-bonds of various strengths within the structures and hamper the formation of an ordered network. In situ high temperature powder X-ray diffraction data indicated that the amorphous nature of both phases surprisingly persisted to similar to 450 degrees C. Further NMR and TGA studies found that above ambient temperature some water molecules reacted with P2O7 anions, leading to the hydrolysis of some P-O-P linkages and the formation of HPO42- anions within the amorphous matrix. The latter anions then recombined into P2O7 ions at higher temperatures prior to crystallization. Together, these findings provide important new materials with unexplored potential for enzyme-assisted resorption and establish factors crucial to isolate further stable amorphous inorganic materials.