People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hämäläinen, Jani Marko Antero
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2020Van der Waals epitaxy of continuous thin films of 2D materials using atomic layer deposition in low temperature and low vacuum conditionscitations
- 2019How insignificant modifications of photocatalysts can significantly change their photocatalytic activitycitations
- 2018Rhenium Metal and Rhenium Nitride Thin Films Grown by Atomic Layer Depositioncitations
- 2018Atomic Layer Deposition of Rhenium Disulfidecitations
- 2016Atomic Layer Deposition of Metal Phosphates and Lithium Silicates
- 2016Atomic Layer Deposition of Iridium Thin Films Using Sequential Oxygen and Hydrogen Pulsescitations
- 2016Nucleation and conformality of iridium and iridium oxide thin films grown by atomic layer depositioncitations
- 2014Atomic Layer Deposition of Noble Metals and Their Oxidescitations
- 2013Low temperature atomic layer deposition of noble metals using ozone and molecular hydrogen as reactantscitations
- 2012Study of amorphous lithium silicate thin films grown by atomic layer depositioncitations
- 2012Lithium Phosphate Thin Films Grown by Atomic Layer Depositioncitations
- 2012Atomic layer deposited iridium oxide thin film as microelectrode coating in stem cell applicationscitations
- 2011Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperaturescitations
- 2011Atomic Layer Deposition and Characterization of Aluminum Silicate Thin Films for Optical Applicationscitations
- 2010pH electrode based on ALD deposited iridium oxidecitations
- 2009Metallic Ir, IrO2 and Pt Nanotubes and Fibers by Electrospinning and Atomic Layer Deposition
- 2009Study on atomic layer deposition of amorphous rhodium oxide thin filmscitations
- 2009Atomic layer deposition of iridium thin films by consecutive oxidation and reduction stepscitations
- 2008Atomic layer deposition of iridium oxide thin films from Ir(acac)₃ and ozonecitations
- 2008Atomic layer deposition of platinum oxide and metallic platinum thin films from Pt(acac)₂ and ozonecitations
Places of action
Organizations | Location | People |
---|
article
Iridium metal and iridium oxide thin films grown by atomic layer deposition at low temperatures
Abstract
Atomic layer deposition (ALD) of both iridium and iridium oxide films at low temperatures has been studied and the resulting films have been examined by XRD, FESEM, XRR, EDX, AFM, TOF-ERDA, and four point probe measurements. Iridium oxide films were successfully grown using (MeCp)Ir(CHD) and ozone between 100 and 180 [degree]C, however, the density of the films substantially reduced at 120 [degree]C and below. The density reduction was accompanied by a phase change from crystalline to amorphous IrO2. Metallic iridium films were deposited between 120 and 180 [degree]C by adding a reductive hydrogen pulse after the oxidative ozone pulse. Comparison of these processes with the earlier process employing the same Ir precursor with molecular oxygen is also made. The (MeCp)Ir(CHD)-O3-H2 process is able to produce metallic films at about 100 [degree]C lower temperature than the oxygen based process.