People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castelli, Ivano Eligio
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2024Exploring the electronic properties and oxygen vacancy formation in SrTiO3 under straincitations
- 2023Structural and electronic properties of double wall MoSTe nanotubescitations
- 2023Transformations of 2D to 3D Double-Perovskite Nanoplates of Cs2AgBiBr6 Compositioncitations
- 2022Rational Catalyst Design for Higher Propene Partial Electro-oxidation Activity by Alloying Pd with Aucitations
- 2022Bandgap prediction of metal halide perovskites using regression machine learning modelscitations
- 2021Band structure of MoSTe Janus nanotubescitations
- 2021Band structure of MoSTe Janus nanotubescitations
- 2020Machine-learning structural and electronic properties of metal halide perovskites using a hierarchical convolutional neural networkcitations
- 2019High-Entropy Alloys as a Discovery Platform for Electrocatalysiscitations
- 2019Fe-Doping in Double Perovskite PrBaCo2(1-x)Fe2xO6-δ: Insights into Structural and Electronic Effects to Enhance Oxygen Evolution Catalyst Stabilitycitations
- 2018Highly Active Nanoperovskite Catalysts for Oxygen Evolution Reaction: Insights into Activity and Stability of Ba0.5Sr0.5Co0.8Fe0.2O2+δ and PrBaCo2O5+δcitations
- 2018Computational Screening of Light-absorbing Materials for Photoelectrochemical Water Splittingcitations
- 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba2In2O5 Thin Filmscitations
- 2017Anisotropic Proton and Oxygen Ion Conductivity in Epitaxial Ba 2 In 2 O 5 Thin Filmscitations
- 2015Band-gap engineering of functional perovskites through quantum confinement and tunnelingcitations
- 2013Computational Screening of Materials for Water Splitting Applications
- 2013Bandgap Engineering of Double Perovskites for One- and Two-photon Water Splittingcitations
- 2013Stability and bandgaps of layered perovskites for one- and two-photon water splittingcitations
- 2012Computational screening of perovskite metal oxides for optimal solar light capturecitations
Places of action
Organizations | Location | People |
---|
article
Computational screening of perovskite metal oxides for optimal solar light capture
Abstract
One of the possible solutions to the world’s rapidly increasing energy demand is the development of new photoelectrochemical cells with improved light absorption. This requires development of semiconductor materials which have appropriate bandgaps to absorb a large part of the solar spectrum at the same time as being stable in aqueous environments. Here we demonstrate an efficient, computational screening of relevant oxide and oxynitride materials based on electronic structure calculations resulting in the reduction of a vast space of 5400 different materials to only 15 promising candidates. The screening is based on an efficient and reliable way of calculating semiconductor band gaps. The outcome of the screening includes all already known successful materials of the types investigated plus some new ones which warrant further experimental investigation.