People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shariki, Sara
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2011Tuning percolation speed in layer-by-layer assembled polyaniline–nanocellulose composite filmscitations
- 2011Enhanced TiO2 surface electrochemistry with carbonised layer-by-layer cellulose-PDDA composite filmscitations
- 2011Electroanalysis at salt - cotton - electrode interfaces: preconcentration effects lead to nano-molar Hg(2+) sensitivitycitations
Places of action
Organizations | Location | People |
---|
article
Enhanced TiO2 surface electrochemistry with carbonised layer-by-layer cellulose-PDDA composite films
Abstract
In this report we demonstrate a versatile (and potentially low-cost) cellulose nano-whisker-based surface carbonisation method that allows well-defined films of TiO2 nanoparticles surface-modified with carbon to be obtained. In a layer-by-layer electrostatic deposition process based on TiO2 nanoparticles, cellulose nano-whiskers, and poly(diallyl-dimethylammonium) or PDDA are employed to control the ratio of surface carbon to TiO2. Characterisation based on optical, AFM, XRD, and XPS methods is reported. Electrochemical measurements suggest improved access to surface states, dopamine binding at the anatase surface, and surface redox cycling aided by the thin amorphous carbon film in mesoporous TiO2. In future, the amorphous carbon layer method could be applied for surface processes for a wider range of semiconductor or insulator surfaces.