Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bjerg, Lise

  • Google
  • 1
  • 5
  • 13

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2011Nanocomposites combining conducting and superparamagnetic components prepared via an organogel13citations

Places of action

Chart of shared publication
Amabilino, David B.
1 / 8 shared
Taboada, Elena
1 / 1 shared
Puigmarti-Luis, Josep
1 / 7 shared
Roig, Anna
1 / 5 shared
Pino, Angel Perez Del
1 / 1 shared
Chart of publication period
2011

Co-Authors (by relevance)

  • Amabilino, David B.
  • Taboada, Elena
  • Puigmarti-Luis, Josep
  • Roig, Anna
  • Pino, Angel Perez Del
OrganizationsLocationPeople

article

Nanocomposites combining conducting and superparamagnetic components prepared via an organogel

  • Amabilino, David B.
  • Taboada, Elena
  • Bjerg, Lise
  • Puigmarti-Luis, Josep
  • Roig, Anna
  • Pino, Angel Perez Del
Abstract

<p>A nanocomposite material combining an organic molecular gelator and oleate-coated iron oxide nanoparticles in proportions which range from one to fifty weight percent of the inorganic material has been prepared via the gel state. The proportion of nanoparticles and organic gelator in this mixed colloidal system gives very different characteristics to the final hybrid xerogel. Characterisation of the xerogels by transmission electron microscopy shows that at low loadings of the inorganic material a uniform distribution is observed, while above ten weight percent of nanoparticles a clear phase separation of the components (organic and inorganic) is revealed. Doping of the organic component of the xerogels by chemical oxidation results in the formation of conducting composites, whose electrical characteristics-probed by current sensing atomic force microscopy and spectroscopy-vary importantly with the amount of iron oxide colloid. The best conductors are found at low loadings of inorganic particles, at which an interesting alignment of the organic fibres is observed. The work shows that conducting materials incorporating magnetic particles can be prepared simply through the organogel route, and raises possibilities for the discovery of new properties that could come from the combination of these or related systems.</p>

Topics
  • nanoparticle
  • nanocomposite
  • impedance spectroscopy
  • phase
  • atomic force microscopy
  • transmission electron microscopy
  • iron