People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Den Toonder, Jaap M. J.
Eindhoven University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Fully Transparent, Ultrathin Flexible Organic Electrochemical Transistors with Additive Integration for Bioelectronic Applicationscitations
- 2023Single Hydrogel Particle Mechanics and Dynamics Studied by Combining Capillary Micromechanics with Osmotic Compressioncitations
- 2023Round lumen-based microfluidic devices for modelling cancer metastasis
- 2023Nanomagnetic Elastomers for Realizing Highly Responsive Micro- and Nanosystemscitations
- 2023Nanomagnetic Elastomers for Realizing Highly Responsive Micro- and Nanosystemscitations
- 2022A Prototype System with Custom-Designed RX ICs for Contrast-Enhanced Ultrasound Imagingcitations
- 2017Microfluidic magnetic bead conveyor beltcitations
- 2017Magnetofluidic conveyor belt
- 2014Monocytic cells become less compressible but more deformable upon activationcitations
- 2012Magnetically actuated artificial cilia : the effect of fluid inertiacitations
- 2011Magnetically-actuated artificial cilia for microfluidic propulsioncitations
- 2009Numerical simulation of flat-tip micro-indentation of glassy polymers: influence of loading speed and thermodynamic statecitations
- 2007Micro-mechanical testing of SiLK by nanoindentation and substrate curvature techniquescitations
- 2006Indentation: the experimenter's holy grail for small-scale polymer characterization?
- 2006Buckle morphology of compressed inorganic thin layers on a polymer substratecitations
- 2005Viscoelastic characterization of low-dielectric-constant SiLK films using nano-indentation in combination with finite element modelingcitations
- 2005Finite thickness influence on spherical and conical indentation on viscoelastic thin polymer filmcitations
- 2005On factors affecting the extraction of elastic modulus by nanoindentation of organic polymer filmscitations
- 2004Mechanical characterization of SiLK by nanoindentation and substrate curvature techniquescitations
- 2004Optimization of mechanical properties of thin free-standing metal films for RF-MEMScitations
- 2004Optimization of mechanical properties of thin free-standing metal films for RF-MEMScitations
- 2003Residual stresses in multilayer ceramic capacitors: measurement and computationcitations
- 2003Influence of visco-elasticity of low-k dielectrics on thermo-mechanical behavior of dual damascene processcitations
- 2002Fracture toughness and adhesion energy of sol-gel coatings on glasscitations
- 2002Measuring mechanical properties of coatings : a methodology applied to nano-particle-filled sol-gel coatings on glasscitations
- 2000Determination of the elastic modulus and hardness of sol-gel coatings on glass: influence of indenter geometrycitations
- 2000The effect of friction on scratch adhesion testing : application to a sol-gel coating on polypropylenecitations
Places of action
Organizations | Location | People |
---|
article
Magnetically-actuated artificial cilia for microfluidic propulsion
Abstract
In this paper we quantitatively analyse the performance of magnetically-driven artificial cilia for labon-a-chip applications. The artificial cilia are fabricated using thin polymer films with embeddedmagnetic nano-particles and their deformation is studied under different external magnetic fields andflows. A coupled magneto-mechanical solidfluid model that accurately captures the interaction between the magnetic field, cilia and fluid is used to simulate the cilia motion. The elastic and magnetic properties of the cilia are obtained by fitting the results of the computational model to the experimental data. The performance of the artificial cilia with a non-uniform cross-section is characterised using the numerical model for two channel configurations that are of practical importance: an open-loop and a closed-loop channel. We predict that the flow and pressure head generated by the artificial cilia can be as high as 18 microlitres per minute and 3 mm of water, respectively. We also study the effect of metachronal waves on the flow generated and show that the fluid propelled increases drastically compared to synchronously beating cilia, and is unidirectional. This increase is significant even when the phase difference between adjacent cilia is small. The obtained results provide guidelines for the optimal design of magnetically-driven artificial cilia for microfluidic propulsion.