People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Bimbo, Nuno
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2022Electrodeposition of nickel–iron on stainless steel as an efficient electrocatalyst coating for the oxygen evolution reaction in alkaline conditionscitations
- 2021Kinetics and enthalpies of methane adsorption in microporous materials AX-21, MIL-101 (Cr) and TE7citations
- 2021Optimising the generation of hydrogen as a carbon-free fuel for the future, by development of new and unique catalytic coatings
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2020Experimental investigation of energy storage properties and thermal conductivity of a novel organic phase change material/MXene as A new class of nanocompositescitations
- 2015Direct Evidence for Solid-like Hydrogen in a Nanoporous Carbon Hydrogen Storage Material at Supercritical Temperaturescitations
- 2015Direct evidence for solid-like hydrogen in a nanoporous carbon hydrogen storage material at supercritical temperaturescitations
- 2015High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressurescitations
- 2015High volumetric and energy densities of methane stored in nanoporous materials at ambient temperatures and moderate pressurescitations
- 2014Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressurescitations
- 2014Isosteric enthalpies for hydrogen adsorbed on nanoporous materials at high pressurescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2013Supercritical hydrogen adsorption in nanostructured solids with hydrogen density variation in porescitations
- 2012Improving comparability of hydrogen storage capacities of nanoporous materialscitations
- 2011Analysis of hydrogen storage in nanoporous materials for low carbon energy applicationscitations
- 2011Analysis of hydrogen storage in nanoporous materials for low carbon energy applicationscitations
Places of action
Organizations | Location | People |
---|
article
Analysis of hydrogen storage in nanoporous materials for low carbon energy applications
Abstract
<p>A robust, simple methodology for analysis of isotherms for the adsorption of fluids above their critical temperature onto nanostructured materials is presented. The analysis of hydrogen adsorption in a metal-organic framework is used as an example to illustrate the methodology, which allows the estimation of the absolute adsorption into nanoporous systems. Further advantages of employing this analysis are that adsorption systems can be described using a small number of parameters, and that excess and absolute isotherms can be extrapolated and used to predict adsorption behaviour at higher pressures and over different temperature ranges. Thermodynamic calculations, using the exact Clapeyron equation and the Clausius-Clapeyron approximation applied to the example dataset, are presented and compared. Conventional compression of hydrogen and adsorptive storage are evaluated, with an illustration of the pressure ranges in which adsorption facilitates storage of greater volumes of hydrogen than normal compression in the same operating conditions.</p>