People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Brechin, Euan K.
University of Edinburgh
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2025Robust Y and Lu TrenSal catalysts for ring-opening polymerisation
- 2021Oxidation state variation in bis-calix[4]arene supported decametallic Mn clusterscitations
- 2020With complements of the ligands: an unusual S-shaped [Mn7]2 assembly from tethered calixarenescitations
- 2020Putting the squeeze on molecule-based magnets: exploiting pressure to develop magneto-structural correlations in paramagnetic coordination compoundscitations
- 2019Effect of pi-aromatic spacers on the magnetic properties and slow relaxation of double stranded metallacyclophanes with a Ln(III)-M-II-M-II-Ln(III) (Ln(III) = Gd-III, Dy-III, Y-III; M-II = Ni-II, Co-II) linear topologycitations
- 2019Molecular multifunctionality preservation upon surface deposition for a chiral single-molecule magnetcitations
- 2018Order in disorder:solution and solid-state studies of [MM] wheels (M = Cr, Al; M = Ni, Zn)citations
- 2018Order in disorder: solution and solid-state studies of [MIII 2 MII 5] wheels (MIII = Cr, Al; MII = Ni, Zn)citations
- 2018Order in disordercitations
- 2010MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnetscitations
- 2010Pressure-Induced Jahn-Teller Switching in a Mn12 nanomagnetcitations
- 2010High pressure studies of hydroxo-bridged Cu(II) dimerscitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO) 3(DMF)]n to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2010The effect of pressure on the crystal structure of [Gd(PhCOO)(3)(DMF)](n) to 3.7 GPa and the transition to a second phase at 5.0 GPacitations
- 2009High pressure induced spin changes and magneto-structural correlations in hexametallic SMMscitations
- 2008Grafting derivatives of Mn-6 single-molecule magnets with high anisotropy energy barrier on Au(111) surfacecitations
- 2005Magnetic and theoretical characterization of a ferromagnetic Mn(III) dimercitations
- 2005Studies of an enneanuclear manganese single-molecule magnetcitations
- 2004Synthesis, structure, and magnetic properties of a [Mn22] wheel-like single-molecule magnetcitations
- 2004New routes to polymetallic clusters: Fluoride-based tri-, deca-, and hexaicosametallic MnIII clusters and their magnetic propertiescitations
- 2004New routes to polymetallic clusterscitations
Places of action
Organizations | Location | People |
---|
article
MCD spectroscopy of hexanuclear Mn(III) salicylaldoxime single-molecule magnets
Abstract
<p>The hexanuclear cages [Mn6O2(R-sao)(6)L-2(EtOH)(x)(H2O)(y)] "Mn-6" behave as single-molecule magnets (SMMs) below a characteristic blocking temperature. As with [Mn12O12(O2CR)(16)(H2O)(4)] "Mn-12" the electronic absorption spectra are rather featureless, yielding little information on the electronic structure of the magnetic ions. Low temperature Magnetic Circular Dichroism (MCD) spectra afford greater resolution of the optical transitions and also probe the magnetic properties of the system. Both the ground state spin and blocking temperature of the Mn-6 cages are determined by subtle structural perturbations of a generic Mn6O2 core. Absorbance and MCD spectra are reported for [Mn6O2(Et-sao)(6){O2CPh(Me)(2)}(2)(EtOH)(6)] (1), [Mn6O2(Et-sao)(6){O2CPh}(2)(EtOH)(4)(H2O)(2)] (2), [Mn6O2(sao)(6){O2CPh}(2)(EtOH)(4)]center dot EtOH (3) and the trinuclear precursor [Mn3O(Et-sao)(3)(MeOH)(3)](ClO4) (4) cast into polymer film. SMM behaviour has previously been observed using magnetic susceptibility measurements on powder and single-crystal samples. The ligand field environment of the magnetic ions is assumed to be similar in (1) and (2) and their different blocking temperatures are attributed to the magnitude of the effective exchange constant. The MCD spectra of (1) and (2), in which the ground state spin S = 12, show that the ligand field environments of the Mn ions are almost identical and that magnetic hysteresis persists for isolated molecules when crystal packing forces are removed. The subtle structural differences between (1) and (2) are manifested in the field dependence of the MCD response at different wavelengths that reflect changes in band polarisation. The MCD spectrum of (3) contains features not apparent in those of (1) and (2). These are attributed to 5-coordinate Mn(III), which is unique to (3) among the compounds studied. (3) has ground state spin S = 4, a lower blocking temperature and consequently no observable hysteresis in the MCD down to 1.7 K. Comparison of the MCD spectra of (1)-(3) to that of (4) confirms the integrity of the Mn6O2 core when these materials are cast into polymer film.</p>