Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Gascon, S. A.

  • Google
  • 1
  • 10
  • 30

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2010Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide30citations

Places of action

Chart of shared publication
Nelson, G. W.
1 / 2 shared
Taylor, James
1 / 11 shared
Marken, Frank
1 / 91 shared
Evans, N. D. M.
1 / 1 shared
Rassaei, Liza
1 / 4 shared
Foord, J. S.
1 / 2 shared
Lawrence, R.
1 / 3 shared
Watkins, John D.
1 / 2 shared
Bull, Steven D.
1 / 2 shared
Wolverson, Daniel
1 / 23 shared
Chart of publication period
2010

Co-Authors (by relevance)

  • Nelson, G. W.
  • Taylor, James
  • Marken, Frank
  • Evans, N. D. M.
  • Rassaei, Liza
  • Foord, J. S.
  • Lawrence, R.
  • Watkins, John D.
  • Bull, Steven D.
  • Wolverson, Daniel
OrganizationsLocationPeople

article

Carbon nanoparticle surface functionalisation: converting negatively charged sulfonate to positively charged sulfonamide

  • Nelson, G. W.
  • Taylor, James
  • Marken, Frank
  • Evans, N. D. M.
  • Rassaei, Liza
  • Foord, J. S.
  • Lawrence, R.
  • Gascon, S. A.
  • Watkins, John D.
  • Bull, Steven D.
  • Wolverson, Daniel
Abstract

The surface functionalities of commercial sulfonate-modified carbon nanoparticles (ca. 9-18 nm diameter, Emperor 2000) have been converted from negatively charged to positively charged via sulfonylchloride formation followed by reaction with amines to give suphonamides. With ethylenediamine, the resulting positively charged carbon nanoparticles exhibit water solubility (in the absence of added electrolyte), a positive zeta-potential, and the ability to assemble into insoluble porous carbon films via layer-by-layer deposition employing alternating positive and negative carbon nanoparticles. Sulfonamide-functionalised carbon nanoparticles are characterised by Raman, AFM, XPS, and voltammetric methods. Stable thin film deposits are formed on 3 mm diameter glassy carbon electrodes and cyclic voltammetry is used to characterise capacitive background currents and the adsorption of the negatively charged redox probe indigo carmine. The Langmuirian binding constant K = 4000 mol(-1) dm(3) is estimated and the number of positively charged binding sites per particle determined as a function of pH.

Topics
  • nanoparticle
  • Deposition
  • porous
  • impedance spectroscopy
  • surface
  • Carbon
  • thin film
  • x-ray photoelectron spectroscopy
  • atomic force microscopy
  • amine
  • cyclic voltammetry