People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Chick C.
University of Bath
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2020Phase behavior and substitution limit of mixed cesium-formamidinium lead triiodide perovskitescitations
- 2014Determining hydrogen positions in crystal engineered organic molecular complexes by joint neutron powder and single crystal X-ray diffractioncitations
- 2012Probing hydrogen positions in hydrous compounds:information from parametric neutron powder diffraction studiescitations
- 2012Probing hydrogen positions in hydrous compoundscitations
- 2010Structural isotope effects in metal hydrides and deuteridescitations
- 2010The kinetics of bulk hydration of the disaccharides α-lactose and trehalose by in situ neutron powder diffractioncitations
- 2009Crystallography of hydrogen-containing compoundscitations
- 2009Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffractioncitations
- 2009In situ neutron powder diffraction and structure determination in controlled humiditiescitations
- 2002Variable temperature powder neutron diffraction study of SmNiO3 through its M-I transition using a combination of samarium and nickel isotopic substitutioncitations
Places of action
Organizations | Location | People |
---|
article
Structural isotope effects in metal hydrides and deuterides
Abstract
Historically the extraction of high-quality crystallographic information from inorganic samples having high hydrogen contents, such as metal hydrides, has involved preparing deuterated samples prior to study using neutron powder diffraction. We demonstrate, through direct comparison of the crystal structure refinements of the binary hydrides SrH2 and BaH2 with their deuteride analogues at 2 K and as a function of temperature, that precise and accurate structural information can be obtained from rapid data collections from samples containing in excess of 60 at.% hydrogen using modern high-flux, medium resolution, continuous wavelength neutron powder diffraction instruments. Furthermore, observed isotope-effects in the extracted lattice parameters and atomic positions illustrate the importance of investigating compounds in their natural hydrogenous form whenever possible.