Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Iversen, Tommy

  • Google
  • 1
  • 5
  • 83

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2009Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating83citations

Places of action

Chart of shared publication
Larsson, Per Tomas
1 / 7 shared
Berglund, Lars A.
1 / 28 shared
Nilsson, Helena
1 / 1 shared
Malm, Erik
1 / 1 shared
Zhou, Qi
1 / 14 shared
Chart of publication period
2009

Co-Authors (by relevance)

  • Larsson, Per Tomas
  • Berglund, Lars A.
  • Nilsson, Helena
  • Malm, Erik
  • Zhou, Qi
OrganizationsLocationPeople

article

Nanostructured biocomposites based on bacterial cellulosic nanofibers compartmentalized by a soft hydroxyethylcellulose matrix coating

  • Larsson, Per Tomas
  • Berglund, Lars A.
  • Nilsson, Helena
  • Malm, Erik
  • Iversen, Tommy
  • Zhou, Qi
Abstract

<p>Biomimetic approaches involving environmentally-friendly synthetic pathways provide an opportunity to elaborate novel high-performance biocomposites. Here we have developed a low-energy biosynthetic system for the production of a high-strength composite material consisting of self-assembled and nanostructured cellulosic nanofibers. This biocomposite is analogous to natural composite materials with high strength and hierarchical organization such as wood or tendon. It was generated by growing the bacterium Acetobacter, which naturally produces cellulosic nanofibers, in the presence of hydroxyethylcellulose (HEC). Individual cellulose fibrils were coated by HEC and exhibited a smaller lateral dimension than pure bacterial cellulose (BC) fibrils. They self-assembled to form compartmentalized nanofibers and larger cellulose fibril aggregates compared to pure BC. The tensile strength of nanocomposite films prepared from the compartmentalized cellulosic nanofibers was 20% higher than that of pure BC sheets and wood cellulose nanopapers, and 60% higher than that of conventional BC/HEC blends, while no strain-to-failure decrease was observed. The thin nanoscale coating consisting of hydrated HEC significantly increased the mechanical performance of the nanocomposite films by provoking compartmentalization of individual fibrils.</p>

Topics
  • nanocomposite
  • impedance spectroscopy
  • strength
  • tensile strength
  • wood
  • cellulose