People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tudor, Mj
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2024Synthesis and characterization of UV organic light-emitting electrochemical cells (OLECs) using phenanthrene fluorene derivatives for flexible applicationscitations
- 2022Solution-processed organic light-emitting electrochemical cells (OLECs) with blue colour emission via silver-nanowires (AgNWs) as Cathode
- 2022Printable bifluorene based ultra-violet (UV) organic light-emitting electrochemical cells (OLECs) with improved device performancecitations
- 2021Visible and ultraviolet Light emitting electrochemical cells realised on woven textilescitations
- 2021Spray-coated organic light emitting electrochemical cells realized on a standard woven polyester cotton textilecitations
- 2020Spray coated light emitting electrochemical cells on standard polyester cotton woven textiles
- 2018Investigation of low temperature processed titanium dioxide (TiO2) films for printed dye sensitized solar cells (DSSCs) for large area flexible applicationscitations
- 2018Screen printed dye-sensitized solar cells (DSSCs) on woven polyester cotton fabric for wearable energy harvesting applicationscitations
- 2018Optimised process of fully spray-coated organic solar cells on woven polyester cotton fabricscitations
- 2015Clamping effect on the piezoelectric responses of screen-printed low temperature PZT/Polymer films on flexible substratescitations
- 2014Flexible screen printed thick film thermoelectric generator with reduced material resistivitycitations
- 2010Optimization of the electrodeposition process of high-performance bismuth antimony telluride compounds for thermoelectric applicationscitations
- 2009High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithographycitations
- 2008Micro and nanotechnologies for thermoelectric generators
- 2008Performance improvement of a vibration-powered electromagnetic generator by reduced silicon surface roughnesscitations
- 2008Towards a nanostructured thermoelectric generator using ion-track lithographycitations
- 2008Development of nanostructures for thermoelectric microgenerators using ion-track lithographycitations
- 2007Nanostructured thermoelectric generator for energy harvesting
- 2004Stiff Load Cell With High Overload Capability and Direct Frequency Output
- 2004Development of metallic digital strain gauges
Places of action
Organizations | Location | People |
---|
article
High density p-type Bi0.5Sb1.5Te3 nanowires by electrochemical templating through ion-track lithography
Abstract
High density p-type Bi0.5Sb1.5Te3 nanowire arrays are produced by a combination of electrodeposition and ion-track lithography technology. Initially, the electrodeposition of p-type wBi(0.5)Sb(1.5)Te(3) films is investigated to find out the optimal conditions for the deposition of nanowires. Polyimide-based Kapton foils are chosen as a polymer for ion track irradiation and nanotemplating Bi0.5Sb1.5Te3 nanowires. The obtained nanowires have average diameters of 80 nm and lengths of 20 mu m, which are equivalent to the pore size and thickness of Kapton foils. The nanowires exhibit a preferential orientation along the {110} plane with a composition of 11.26 at.% Bi, 26.23 at.% Sb, and 62.51 at.% Te. Temperature dependence studies of the electrical resistance show the semiconducting nature of the nanowires with a negative temperature coefficient of resistance and band gap energy of 0.089 +/- 0.006 eV.