Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Marze, Sébastien

  • Google
  • 2
  • 7
  • 101

National Research Institute for Agriculture, Food and Environment

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015Rheological properties of food foams produced by SMX static mixers21citations
  • 2009Oscillatory rheometry of aqueous foams : surfactant, liquid fraction, aging and protocol effects80citations

Places of action

Chart of shared publication
Valle, D. Della
1 / 1 shared
Laporte, M.
1 / 2 shared
Loisel, Catherine
1 / 5 shared
Montillet, Agnès
1 / 3 shared
Riaublanc, A.
1 / 2 shared
Saint-Jalmes, Arnaud
1 / 5 shared
Guillermic, Reine-Marie
1 / 2 shared
Chart of publication period
2015
2009

Co-Authors (by relevance)

  • Valle, D. Della
  • Laporte, M.
  • Loisel, Catherine
  • Montillet, Agnès
  • Riaublanc, A.
  • Saint-Jalmes, Arnaud
  • Guillermic, Reine-Marie
OrganizationsLocationPeople

article

Oscillatory rheometry of aqueous foams : surfactant, liquid fraction, aging and protocol effects

  • Saint-Jalmes, Arnaud
  • Guillermic, Reine-Marie
  • Marze, Sébastien
Abstract

We report a new set of rheological data on well controlled aqueous foams. We investigate and analyze how the linear viscoelastic regime, the foam yielding and the non-linear regimes above yielding actually depends on the interfacial properties, bubble size, liquid fraction and foam age. Results are compared to previous works on foams and emulsions, and to models. The viscoelastic linear properties and yield stress are strongly dependent on the liquid fraction, and for a low molecular weight surfactant, providing "fluid-like" interfaces, a universal behavior is recovered. However, discrepancies are observed for protein foams, and are discussed in relation to the interface and thin film properties. We also discuss the features of the non linear regimes above the yield stress, which cannot be fully explained by recent models. As the foam ages, the evolution of the viscoelastic properties can be interpreted in terms of foam drainage and coarsening; nevertheless, some of the aging effects remain unexplained. We also present the results of a new mode of oscillatory experiments, at constant shear rate the macroscopic results obtained with this new protocol turn out to be strikingly well correlated to microscopic measurements at the bubble scale. We then show that a same solid-liquid transition is obtained either by applying a deformation, or by the foam coarsening; we propose that the transition is controlled by a Deborah number De, which can be seen either as a frequency ratio or a deformation ratio. For De < 1, the foam is fluid-like and the bubbles are unjammed (and the opposite is true when De > 1).

Topics
  • impedance spectroscopy
  • experiment
  • thin film
  • aging
  • interfacial
  • molecular weight
  • surfactant
  • aging
  • rheometry