People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Overgaard, Jacob
Aarhus University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2023Electron Density Analysis of Metal-Metal Bonding in a Ni 4 Cluster Featuring Ferromagnetic Exchangecitations
- 2023Electron density analysis of metal-metal bonding in a Ni4 cluster featuring ferromagnetic exchangecitations
- 2020Chemical bonding in colossal thermopower FeSb2citations
- 2020High-Pressure Crystallographic and Magnetic Studies of Pseudo-D5h Symmetric Dy(III) and Ho(III) Single-Molecule Magnetscitations
- 2020Structure, DFT based investigations on vibrational and nonlinear optical behavior of a new guanidinium cobalt thiocyanate complexcitations
- 2019Insights into Single-Molecule-Magnet Behavior from the Experimental Electron Density of Linear Two-Coordinate Iron Complexescitations
- 2018Determination of d-Orbital Populations in a Cobalt(II) Single-Molecule Magnet Using Single-Crystal X-ray Diffractioncitations
- 2017Crystal structure across the β to α phase transition in thermoelectric Cu2−xSecitations
- 2016Anisotropic compressibility of the coordination polymer emim[Mn(btc)]citations
- 2016Electron Density Analysis of the "O-O" Charge-Shift Bonding in Rubrene Endoperoxidecitations
- 2014$mathrm{(NH_{4})_{4}Sn_{2}S_{6}·3H_{2}O}$: Crystal Structure, Thermal Decomposition, and Precursor for Textured Thin Filmcitations
- 2014Alkali Metal Ion Templated Transition Metal Formate Framework Materialscitations
- 2014Alkali Metal Ion Templated Transition Metal Formate Framework Materials:Synthesis, Crystal Structures, Ion Migration, and Magnetismcitations
- 2014Metal distribution and disorder in the crystal structure of [NH2Et2][Cr7MF8(tBuCO2)16] wheel molecules for M = Mn, Fe, Co, Ni, Cu, Zn and Cdcitations
- 2013Pressure versus temperature effects on intramolecular electron transfer in mixed-valence complexescitations
- 2012Charge density study of two FeS2 polymorphs
- 2012Charge density study of two FeS2 polymorphs:Experimental charge density study of two FeS2 structures
- 2009Experimental charge density in an oxidized trinuclear iron complex using 15 K synchrotron and 100 K conventional single-crystal X-ray diffractioncitations
Places of action
Organizations | Location | People |
---|
article
Experimental charge density in an oxidized trinuclear iron complex using 15 K synchrotron and 100 K conventional single-crystal X-ray diffraction
Abstract
The experimental electron density distribution in a crystal consisting of the simplest conceivable trinuclear carboxylate-bridged iron-μ 3 - oxo dianion with two α-picolinium cations has been determined using both synchrotron (15 K) and conventional (100 K) X-ray diffraction data. The constituent trinuclear oxo-centered molecule consists of six μ 2 -bridging formate groups between the iron pairs, while the axial ligand for all iron atoms is another formate group. The compound {[Fe 3 O(HCOO) 6 (HCOO) 3 ] 2- ·H 2 O·2(α-CH 3 NC 5 H 5 ) + }, (1) crystallizes in the monoclinic space group P2 1 /m with charge assisted hydrogen bonds linking the α-picolinium cations to the trinuclear groups. The chemical bonding in the weakly asymmetric Fe 3 O-core of 1 has been examined through the use of the quantum theory of atoms in molecules, and in combination with experimental d-orbital populations, a significant electron sharing is observed between the Fe atoms and the central oxygen. The central oxygen exhibits clear sp 2 hybridization, and the iron atoms have valence shell charge concentrations in all metal-ligand bond directions. The relative bond strengths are evaluated based upon the charge density distribution and found to be in accordance with the geometrical results. Integrated group charges follow expectations from formal chemical valences.