People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mkami, Hassane El
University of St Andrews
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2018Distance measurement of a noncovalently bound Y@C82 Pair with double electron electron resonance spectroscopycitations
- 2008Multifrequency EPR analysis of the positive polaron in I2-doped poly(3-hexylthiophene) and in poly[2-methoxy-5-(3,7-dimethyloctyloxy)]-1,4- phenylenevinylenecitations
- 2007Transition metal- And rare earth-doped ZnOcitations
Places of action
Organizations | Location | People |
---|
article
Multifrequency EPR analysis of the positive polaron in I2-doped poly(3-hexylthiophene) and in poly[2-methoxy-5-(3,7-dimethyloctyloxy)]-1,4- phenylenevinylene
Abstract
<p>The W-band continuous-wave electron paramagnetic resonance (EPR) analysis of chemically induced polarons in drop-cast and spin-coated polyphenylenevinylene-type and polythiophene-type polymer films reveals rhombic g tensors in both cases. The dependence of the W-band EPR signals on the orientation of the spin-coated films with respect to the magnetic field indicates a high degree of backbone alignment with the substrate and allows a partial assignment of the g tensor orientation. The derived molecular orientations of the polymer chains in the spin-coated films show clear differences between the two types of polymers. The proton hyperfine interactions obtained from X-band HYSCORE (hyperfine sublevel correlation) and Q- and W-band pulsed ENDOR (electron-nuclear double resonance) experiments are interpreted in terms of earlier theoretical studies on the extension of the polarons.</p>