People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kendrick, Emma
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Design of slurries for 3D printing of sodium-ion battery electrodescitations
- 2024Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Phase-selective recovery and regeneration of end-of-life electric vehicle blended cathodes via selective leaching and direct recyclingcitations
- 2023Impact of Short Chain Polymer in Ionic Conductivity for Polymer Solid-State Electrolyte Towards Inter-/Intramolecular O-H Bond
- 2023Methodology in quality control for electrode processingcitations
- 2023Rapid sintering of Li6.5La3Zr1Nb0.5Ce0.25Ti0.25O12 for high density lithium garnet electrolytes with current induced in-situ interfacial resistance reduction.citations
- 2022Roadmap on Li-ion battery manufacturing researchcitations
- 2022Roadmap on Li-ion battery manufacturing research
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouch.citations
- 2022Applications of advanced metrology for understanding the effects of drying temperature in the lithium-ion battery electrode manufacturing processcitations
- 2022Benign solvents for recycling and re-use of a multi-layer battery pouchcitations
- 2022Determining the electrochemical transport parameters of sodium-ions in hard carbon composite electrodescitations
- 2022Rheology and structure of lithium‐ion battery electrode slurriescitations
- 2021On the solubility and stability of polyvinylidene fluoridecitations
- 2021Microstructural design of printed graphite electrodes for lithium-ion batteriescitations
- 2021Evaluation of Ga0.2Li6.4Nd3Zr2O12 garnetscitations
- 2020Operando visualisation of battery chemistry in a sodium-ion battery by 23Na magnetic resonance imagingcitations
- 2010Crystal chemistry and optimization of conductivity in 2A, 2M and 2H alkaline earth lanthanum germanate oxyapatite electrolyte polymorphscitations
- 2007Investigation of the structural changes on Zn doping in the apatite-type oxide ion conductor La9.33Si6O26citations
- 2007Structural studies of the proton conducting perovskite 'La0.6Ba0.4ScO2.8'citations
- 2007Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moietiescitations
- 2006Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductorscitations
Places of action
Organizations | Location | People |
---|
document
Neutron diffraction and atomistic simulation studies of Mg doped apatite-type oxide ion conductors
Abstract
In this paper, detailed studies of the effect of Mg doping in the apatite-type oxide ion conductor La9.33Si6O26 are reported. Mg is confirmed as an ambi-site dopant, capable of substituting for both La and Si, depending on the starting composition. A large enhancement in the conductivity is observed for Si site substitution, with a reduction for substitution on the La site. Neutron powder diffraction studies show that in agreement with cation size expectations, an enlargement of the unit cell is observed on Mg substitution for Si, with a corresponding increase in the size of the tetrahedral sites. For Mg substitution on the La site, a contraction of the unit cell is observed, and the neutron diffraction results indicate that there is preferential occupancy of Mg on the La2 (1/3, 2/3, ≈0.5) site. Atomistic simulation studies show significant local structural changes affecting the oxide ion channels in both cases. Mg doping on the Si site leads to a local expansion of the channels, while doping on the La site results in a large displacement of the silicate O4 site, such that it encroaches the oxide ion channels. The observed differences in conductivities are discussed with respect to these observations.