Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pincus, Jl

  • Google
  • 1
  • 6
  • 19

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2005Selective fluorescence detection of divalent and trivalent metal ions with functionalized lipid membranes19citations

Places of action

Chart of shared publication
Shelnutt, Ja
1 / 1 shared
Huang, W.
1 / 9 shared
Gopalan, As
1 / 1 shared
Jacobs, Hk
1 / 1 shared
Song, Y.
1 / 14 shared
Sasaki, Dy
1 / 1 shared
Chart of publication period
2005

Co-Authors (by relevance)

  • Shelnutt, Ja
  • Huang, W.
  • Gopalan, As
  • Jacobs, Hk
  • Song, Y.
  • Sasaki, Dy
OrganizationsLocationPeople

article

Selective fluorescence detection of divalent and trivalent metal ions with functionalized lipid membranes

  • Shelnutt, Ja
  • Huang, W.
  • Gopalan, As
  • Jacobs, Hk
  • Pincus, Jl
  • Song, Y.
  • Sasaki, Dy
Abstract

A series of functionalized lipid membranes were shown to respond selectively to Fe3+, Cr3+, Cu2+, and Fe2+ with a distinctive change in bilayer fluorescence. The optical response is due to a change in the aggregational state of functionalized, pyrene-labeled lipids as they recognize and bind to the metal ion. Two new lipids are introduced with 2,2-bipyridine (PSBiPy) and N-methylamide (PSMA) headgroups. These functionalized lipids, along with two other lipids having hydroxyl (PSOH) and iminodiacetic acid (PSIDA) headgroups, were incorporated into bilayers of distearylphosphatidylcholine (DSPC) producing materials that exhibited an excellent range of sensitivity for the metal ions at low pH. At neutral pH the metal ion sensitivities were lost for PSOH and PSMA while the sensitivity and selectivity for Cu2+ increased for PSBiPy. In addition to optical sensing, the bilayers also can undergo restructuring of the membrane architecture. Dynamic light scattering and transmission electron microscope images show that for the majority of the bilayers, metal ion addition caused only aggregation of the vesicles. However, for the PSBiPy/DSPC membranes extraordinary square-shaped assemblies of planar bilayers formed in the presence of 100 µM Cu2+.

Topics
  • impedance spectroscopy
  • dynamic light scattering