Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mandle, A. B.

  • Google
  • 1
  • 5
  • 51

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2004Size dependent redox behavior of monolayer protected silver nanoparticles (2-7 nm) in aqueous medium51citations

Places of action

Chart of shared publication
Pasricha, Renu
1 / 34 shared
Vijayamohanan, K.
1 / 7 shared
Mulla, I. S.
1 / 3 shared
Sharma, Jadab
1 / 3 shared
Chaki, Nirmalya Kumar
1 / 1 shared
Chart of publication period
2004

Co-Authors (by relevance)

  • Pasricha, Renu
  • Vijayamohanan, K.
  • Mulla, I. S.
  • Sharma, Jadab
  • Chaki, Nirmalya Kumar
OrganizationsLocationPeople

article

Size dependent redox behavior of monolayer protected silver nanoparticles (2-7 nm) in aqueous medium

  • Pasricha, Renu
  • Vijayamohanan, K.
  • Mulla, I. S.
  • Sharma, Jadab
  • Mandle, A. B.
  • Chaki, Nirmalya Kumar
Abstract

<p>Monolayer protected nanoclusters are of current interest due to their ease of synthesis, high stability and possibility to precisely control their aspect ratio by preparation procedures, so that they can be tuned for a wide range of applications. Since these nanostructured metallic particles show fascinating size dependent optical, electronic, catalytic and magnetic properties, it is important to modulate their size, shape and intercluster spacing during their synthesis. These size dependent phenomena suggest that the electrochemistry of nanometer scale metal particles should be different from that of their bulk analogues. In the present study, we report a systematic variation in the redox behaviour of dodecanethiol protected silver nanoparticles with size (2-7 nm). Cyclic voltammograms in 0.1 M aqueous KCl solution show irreversible nature and the redox behaviour is indeed affected by the size as in agreement with the theoretical calculations of the Kubo gap. More specifically, the separation between oxidation and reduction peaks (ΔE<sub>p</sub>) increases with an increase in size reaching a maximum (3.5-6 nm) followed by a decline, whereas the E<sub>1/2</sub> seems to be almost constant throughout this size regime. As the kinetic parameters are directly related to the ΔE<sub>p</sub> value, the electron transfer facility should decrease with an increase in size in a similar manner. All the silver nanoclusters were characterized by their surface plasmon peak position, which was found to decrease with increase in size with a concomitant broadening. The particle size calculated from TEM reveals a fairly monodispersed nature whereas selected area electron diffraction (SAED) results confirm the presence of fcc structure for all the Ag clusters.</p>

Topics
  • nanoparticle
  • impedance spectroscopy
  • surface
  • cluster
  • silver
  • electron diffraction
  • transmission electron microscopy