People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Lockyer, Nicholas P.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2023A high-resolution versatile focused ion implantation platform for nanoscale engineeringcitations
- 2016Evaluation of biomolecular distributions in rat brain tissues by means of ToF-SIMS using a continuous beam of Ar clusterscitations
- 2015Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry - How do polyatomic primary beams C 60 + , Ar 2000 + , water-doped Ar 2000 + and (H 2 O) 6000 + compare?citations
- 2015Mass spectrometric imaging of brain tissue by time-of-flight secondary ion mass spectrometry – How do polyatomic primary beams C60+, Ar2000+, water-doped Ar2000+ and (H2O)6000+ compare?citations
- 2013Time-of-flight SIMS as a novel approach to unlocking the hypoxic properties of cancercitations
- 2013Peptide structural analysis using continuous Ar cluster and C60 ion beamscitations
- 2013Peptide structural analysis using continuous Ar cluster and C60 ion beamscitations
- 2013Peak picking as a pre-processing technique for imaging time of flight secondary ion mass spectrometrycitations
- 2013ToF-SIMS as a tool for metabolic profiling small biomolecules in cancer systemscitations
- 2012Peak picking as a pre-processing technique for imaging time of flight secondary ion mass spectrometry
- 2011Three-dimensional mass spectral imaging of HeLa-M cells - Sample preparation, data interpretation and visualisationcitations
- 2010Influence of omega-6 PUFA arachidonic acid and bone marrow adipocytes on metastatic spread from prostate cancercitations
- 2010Effects of cryogenic sample analysis on molecular depth profiles with TOF-secondary ion mass spectrometrycitations
- 2008Subsurface biomolecular imaging of Streptomyces coelicolor using secondary ion mass spectrometrycitations
- 2008Discrimination of prostate cancer cells and non-malignant cells using secondary ion mass spectrometrycitations
- 2008A new dynamic in mass spectral imaging of single biological cellscitations
- 2004The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancercitations
Places of action
Organizations | Location | People |
---|
article
The combined application of FTIR microspectroscopy and ToF-SIMS imaging in the study of prostate cancer
Abstract
At present, a prognosis for prostate cancer (CaP) is determined by its accurate assessment of disease grade and stage. Histopathological typing using the Gleason grading system is the most universally accepted approach for grading CaP and provides an indication as to the aggressiveness of the tumour at the time of presentation. However, this system is based upon a visual criterion of pattern recognition that is operator dependent and subject to intra- and inter-observer variability, which can result in inappropriate patient management. Thus, there is a need for a molecular based diagnostic technique to grade tissue samples in a reliable and reproducible manner. In this paper we report a prototype diagnostic classifier for Gleason graded CaP tissue, based upon the integration of FTIR microspectroscopy with linear discriminant analysis (LDA). Blind testing of this model demonstrates 80% agreement of FTIR-LDA grade to histology, for the specimens analysed. We also study the effects of connective tissue absorption upon the area ratio of peaks at A1030 cm-1/A1080 cm-1 which we use as a criterion to biospectroscopically map and distinguish areas of benign from malignant tissue. In addition, imaging time-of-flight secondary ion mass spectrometry (ToF-SIMS) has been applied to study freeze-dried, freeze-fractured prostate cancer cells in vitro. Preliminary results demonstrate localisation of various species including K, Ca and Mg within the cytoplasm that are present at millimolar concentrations and vital to cell physiology. The soft ionisation technique employed also permits for molecular information to be obtained and this has been used to evaluate chemically, different fracture planes within the analysis area.