Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Bras, W.

  • Google
  • 13
  • 78
  • 413

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (13/13 displayed)

  • 2018Investigating the interstellar dust through the Fe K-edge27citations
  • 2016High-resolution small-angle x-ray diffraction study of long-range order in hard-sphere colloidal crystals.59citations
  • 2014X-ray irradiation induced reduction and nanoclustering of lead in borosilicate glass26citations
  • 2014Influence of metal-support interaction on the surface structure of gold nanoclusters deposited on native SiOx/Si substrates25citations
  • 2013Effect of processing parameters on the morphology development during extrusion of polyethylene tape: an in-line Small-Angle X-ray Scattering (SAXS) study49citations
  • 2012Tuning of the size and the lattice parameter of ion-beam synthesized Pb nanoparticles embedded in Si6citations
  • 2010Synergistic reinforcement of highly oriented poly(propylene) tapes by sepiolite nanoclay:citations
  • 2010Real-time WAXD detection of mesophase development during quenching of propene/ethylene copolymers76citations
  • 2010Synergistic Reinforcement of Highly Oriented Poly(propylene) Tapes by Sepiolite Nanoclay27citations
  • 2006Mesomorphism, polymorphism, and semicrystalline morphology of poly(Di-n-propylsiloxane)citations
  • 2005Polymer processing: Using synchrotron radiation to follow structure development in commercial and novel polymer materials9citations
  • 2003Early stages of crystallization in Isotactic Polypropylene93citations
  • 2002A SAXS/WAXS XAFS study of crystallisation in cordierite glass16citations

Places of action

Chart of shared publication
De Groot, F.
1 / 5 shared
Mutschke, H.
1 / 9 shared
Waters, L. B. F. M.
1 / 14 shared
De Vries, C. P.
1 / 5 shared
Zeegers, S. T.
1 / 5 shared
Costantini, E.
1 / 5 shared
De Hoog, E.
1 / 1 shared
Lekkerkerker, H.
1 / 5 shared
Vroege, G.
1 / 5 shared
Aarts, D.
1 / 7 shared
Dolbnya, I.
1 / 12 shared
Kassapidou, K.
1 / 1 shared
Petukhov, A.
1 / 6 shared
Hermida Merino, D.
1 / 4 shared
Banerjee, D.
1 / 17 shared
Liebscher, C. H.
1 / 6 shared
Breemen, Van, L. C. A.
1 / 11 shared
Stanley, H. B.
1 / 1 shared
Pattison, P.
1 / 4 shared
Longo, A.
2 / 23 shared
Peters, G. W. M.
1 / 30 shared
Ciston, J.
1 / 7 shared
Sen, Sabyasachi
1 / 6 shared
Martis, V.
1 / 1 shared
Portale, G.
3 / 20 shared
Albonetti, C.
1 / 3 shared
Biscarini, F.
1 / 8 shared
Giannici, Francesco
1 / 14 shared
Sciortino, Luisa
1 / 8 shared
Martorana, Antonino
1 / 14 shared
Gough, Tim
1 / 8 shared
Ryan, A. J.
3 / 6 shared
Rieger, J.
1 / 2 shared
Heeley, Ellen L.
3 / 17 shared
Hughes, D. J.
1 / 12 shared
Cuppens, Jo
1 / 1 shared
Bals, S.
1 / 8 shared
Kvashnina, K. O.
1 / 3 shared
Vantomme, André
1 / 41 shared
Temst, Kristiaan
1 / 29 shared
Fernandez-Ballester, L.
1 / 2 shared
Van Bael, Margriet
1 / 4 shared
Biermans, E.
1 / 1 shared
Wang, Huan
1 / 3 shared
Deng, H.
2 / 18 shared
Bilotti, E.
2 / 42 shared
Peijs, T.
1 / 8 shared
Lu, D.
2 / 2 shared
Zhang, R.
2 / 28 shared
Fischer, H. R.
1 / 30 shared
Balzano, L.
1 / 9 shared
Azzurri, Fiorenza
1 / 6 shared
Alfonso, Giovanni Carlo
1 / 6 shared
Cavallo, Dario
1 / 44 shared
W., Peters G.
1 / 2 shared
Fischer, Hr
1 / 4 shared
Peijs, Ton
1 / 237 shared
Masin, F.
1 / 1 shared
Goderis, Bart
1 / 27 shared
Magonov, Sn
1 / 1 shared
Ivanov, Da
1 / 1 shared
Gearba, Ri
1 / 1 shared
Papkov, Vs
1 / 1 shared
Anokhin, Dv
1 / 1 shared
Makarova, Nn
1 / 1 shared
Godovsky, Yk
1 / 1 shared
Koch, Mhj
1 / 4 shared
Bondar, Ai
1 / 1 shared
Gleeson, A. J.
1 / 5 shared
Coates, P. D.
1 / 3 shared
Gough, T.
1 / 2 shared
Maidens, A. V.
1 / 1 shared
Olmsted, P. D.
1 / 1 shared
Terrill, N. J.
1 / 7 shared
Fairclough, J. P. A.
1 / 9 shared
Dolbyna, I. P.
1 / 1 shared
Oversluizen, M.
1 / 1 shared
Greaves, G. N.
1 / 6 shared
Chart of publication period
2018
2016
2014
2013
2012
2010
2006
2005
2003
2002

Co-Authors (by relevance)

  • De Groot, F.
  • Mutschke, H.
  • Waters, L. B. F. M.
  • De Vries, C. P.
  • Zeegers, S. T.
  • Costantini, E.
  • De Hoog, E.
  • Lekkerkerker, H.
  • Vroege, G.
  • Aarts, D.
  • Dolbnya, I.
  • Kassapidou, K.
  • Petukhov, A.
  • Hermida Merino, D.
  • Banerjee, D.
  • Liebscher, C. H.
  • Breemen, Van, L. C. A.
  • Stanley, H. B.
  • Pattison, P.
  • Longo, A.
  • Peters, G. W. M.
  • Ciston, J.
  • Sen, Sabyasachi
  • Martis, V.
  • Portale, G.
  • Albonetti, C.
  • Biscarini, F.
  • Giannici, Francesco
  • Sciortino, Luisa
  • Martorana, Antonino
  • Gough, Tim
  • Ryan, A. J.
  • Rieger, J.
  • Heeley, Ellen L.
  • Hughes, D. J.
  • Cuppens, Jo
  • Bals, S.
  • Kvashnina, K. O.
  • Vantomme, André
  • Temst, Kristiaan
  • Fernandez-Ballester, L.
  • Van Bael, Margriet
  • Biermans, E.
  • Wang, Huan
  • Deng, H.
  • Bilotti, E.
  • Peijs, T.
  • Lu, D.
  • Zhang, R.
  • Fischer, H. R.
  • Balzano, L.
  • Azzurri, Fiorenza
  • Alfonso, Giovanni Carlo
  • Cavallo, Dario
  • W., Peters G.
  • Fischer, Hr
  • Peijs, Ton
  • Masin, F.
  • Goderis, Bart
  • Magonov, Sn
  • Ivanov, Da
  • Gearba, Ri
  • Papkov, Vs
  • Anokhin, Dv
  • Makarova, Nn
  • Godovsky, Yk
  • Koch, Mhj
  • Bondar, Ai
  • Gleeson, A. J.
  • Coates, P. D.
  • Gough, T.
  • Maidens, A. V.
  • Olmsted, P. D.
  • Terrill, N. J.
  • Fairclough, J. P. A.
  • Dolbyna, I. P.
  • Oversluizen, M.
  • Greaves, G. N.
OrganizationsLocationPeople

article

A SAXS/WAXS XAFS study of crystallisation in cordierite glass

  • Oversluizen, M.
  • Bras, W.
  • Greaves, G. N.
Abstract

<p>New Cr X-ray absorption fine structure (XAFS) data have been combined with the results of small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) experiments to probe in detail the crystallisation mechanism in cordierite (Mg<sub>2</sub>Al<sub>4</sub>Si<sub>5</sub>O<sub>18</sub> glass doped with 0.34 mol% Cr<sub>2</sub>O<sub>3</sub>. By direct comparison with chromo-aluminate spinels (MgCr<sub>2x</sub>Al<sub>2(1-x)</sub>O<sub>4</sub> Cr XAFS is used to determine the composition of the devitrified Cr species. This is identified as MgCr<sub>0.18</sub>Al<sub>1.82</sub>O<sub>4</sub>, which can be directly related to the Cr content in the starting glass and as a result the total crystalline volume in the fully developed ceramic is predicted to be 4%. In situ WAXS not only reveals the presence of the spinel phase but also a silica-rich stuffed quartz phase. This grows independently of the spinel and is probably nucleated from the glass surface. From our knowledge of the compositions of both crystalline phases we are able to deduce that the SAXS contrast between the surrounding glass and the spinel crystallites is 30 times greater than that between the quartz crystallites and the glass matrix, and therefore dominates the measured scattered intensity and the SAXS invariant that is derived from it. As a consequence we are able to show that the spinel crystalline volume fraction inherent in the SAXS is in close agreement with the 4% value obtained from the Cr XAFS. Furthermore in situ SAXS reveals the gradual development of the spinel particle size and shape during heat treatment. This is conducted in the super-cooled region just above the glass transition temperature, T<sub>g</sub>. By employing a two-step annealing process nucleation can be separated from growth and from time-resolved SAXS measurements the alumino-chromate nanocrystals are found to be closely monodispersed. Over a total time course of 600 min they grow from rough crystallites to smooth spherical particles of radius 21 ± 2 nm, with a final density of (1.2 ± 0.4) × 10<sup>21</sup> m<sup>-3</sup>. As the process of ceramic formation takes place in the viscous melt, growth is indeed found to be limited by diffusion and is complete when all the Cr is exhausted. We use this comprehensive in situ study of crystallisation in cordierite glass to demonstrate the advantages of combining SAXS, WAXS and XAFS for probing the time-resolved chemistry, the microstructure and its development from nucleation sites, that underpins the processing of nanoparticle ceramics.</p>

Topics
  • nanoparticle
  • density
  • impedance spectroscopy
  • microstructure
  • surface
  • experiment
  • melt
  • crystalline phase
  • glass
  • glass
  • glass transition temperature
  • annealing
  • small angle x-ray scattering
  • cordierite
  • X-ray absorption fine structure spectroscopy