Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hyde, Michael

  • Google
  • 1
  • 3
  • 48

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2002Nanoporous iron oxide membranes48citations

Places of action

Chart of shared publication
Marken, Frank
1 / 91 shared
Mckenzie, Katy J.
1 / 2 shared
Compton, Richard G.
1 / 10 shared
Chart of publication period
2002

Co-Authors (by relevance)

  • Marken, Frank
  • Mckenzie, Katy J.
  • Compton, Richard G.
OrganizationsLocationPeople

article

Nanoporous iron oxide membranes

  • Marken, Frank
  • Mckenzie, Katy J.
  • Compton, Richard G.
  • Hyde, Michael
Abstract

<p>A versatile procedure for the formation of nanoporous metal oxide membranes is reported, based on a layer-by-layer deposition procedure ('directed assembly') of metal oxide nanoparticles with appropriate 'linker' molecules; here Fe<sub>2</sub>O<sub>3</sub> particles and phytic acid. Two types of nanoporous Fe<sub>2</sub>O<sub>3</sub> membranes have been prepared and characterised: (A) a nanofilm deposit composed of 4-5 nm diameter Fe<sub>2</sub>O<sub>3</sub> particles linked by phytic acid and (B) a nanoporous film formed after calcination of the type A deposit at 500°C in air. The nanofilm deposits are characterised by microscopy (SEM and AFM) and by electrochemical methods. Mechanically stable and homogeneous nanofilm deposits with controlled thickness (ca. 3 nm per layer deposited) were obtained. Transport of small molecules or ions through the nanoporous structure and their electrochemical conversion are shown to be fast in the presence of a sufficiently high concentration of supporting electrolyte. During the electrochemical oxidation of ferrocyanide, Fe(CN)<sub>6</sub><sup>-4</sup>, the nanoporous structure of the type A deposit is shown to act as an 'active' membrane, which changes the electrode kinetics by 'double-layer superposition' effects. For the second type of nanofilm, type B, ferrocyanide is accumulated by adsorption within the porous structure.</p>

Topics
  • nanoparticle
  • Deposition
  • porous
  • impedance spectroscopy
  • scanning electron microscopy
  • atomic force microscopy
  • iron