People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Flavell, Wendy R.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Toward Water-Resistant, Tunable Perovskite Absorbers Using Peptide Hydrogel Additives
- 2023Elucidating the mechanism of self healing in hydro gel lead halide perovskite composites for use in photovoltaic devices
- 2022Surface stability of ionic-liquid-passivated mixed-cation perovskite probed with in-situ photoelectron spectroscopycitations
- 2021Inelastic background modelling applied to Hard X-ray Photoelectron Spectroscopy of deeply buried layers: a comparison of synchrotron and lab-based (9.25 keV) measurementscitations
- 2020Spatially and temporally resolved degradation in antisolvent treated perovskite films
- 2020Spatially and temporally resolved degradation in antisolvent treated perovskite films
- 2019Air-Stable Methylammonium Lead Iodide Perovskite Thin Films Fabricated via Aerosol-Assisted Chemical Vapor Deposition from a Pseudohalide Pb(SCN)2 Precursorcitations
- 2018Ambient-Air-Stable Inorganic Cs2SnI6 Double Perovskite Thin Films via Aerosol-Assisted Chemical Vapour Depositioncitations
- 2012Growth and characterization of strained and alloyed type-II ZnTe/ZnSe core-shell nanocrystalscitations
- 2011Controlled synthesis of tuned bandgap nanodimensional alloys of PbS xSe1-xcitations
- 2007Electronic properties of the interface between p-CuI and anatase-phase n-Ti O2 single crystal and nanoparticulate surfaces: A photoemission studycitations
- 2005Resonant photoemission of transition metal perovskitescitations
- 2003Local investigation of electronic structure modulation in BaPbxBi1-xO3 via highly spatially resolved low-loss electron energy loss spectroscopy.
- 2003Investigations of chemical and electronic inhomogeneities in BaPb 1-xBixO3 via highly spatially resolved electron energy loss spectroscopycitations
- 2002Electronic structure and reactivity of TM-doped La1-xSrxCoO3 (TM = Ni, Fe) catalystscitations
- 2001X-ray powder diffraction and EXAFS studies on SnAPO-5 and Cu:SnAPO-5citations
Places of action
Organizations | Location | People |
---|
article
X-ray powder diffraction and EXAFS studies on SnAPO-5 and Cu:SnAPO-5
Abstract
SnAPO-5 was synthesised and calcined at 800°C. Copper was introduced into the calcined material by the incipient wetness method. The as-synthesised, calcined and copper-incorporated SnAPO-5 have been studied using X-ray powder diffraction and EXAFS. Rietveld refinements show that the overall microporous AlPO4-5 framework is unaffected by the incorporation of tin or copper. EXAFS shows that tin substitutes for aluminium and/or phosphorus, with an oxygen multiplicity between five and six. X-Ray powder diffraction confirms that tin substitutes into the framework on positions that are close to the tetrahedral faces. Based on crystal chemical considerations it is suggested that tin is five-coordinate in a trigonal bipyramid with its second axial corner protruding into the extra-framework area. For the copper-incorporated material, Cu:SnAPO-5, EXAFS shows that the copper environment is tetragonally distorted octahedral. Powder diffraction confirms an extra-framework disordered square-planar copper-coordination connected to two framework oxygens by longer axial bonds. EXAFS results of calcined Cu:SnAPO-5 show that copper is sited near the tin sites in the framework.