Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Costas, Demetzos

  • Google
  • 1
  • 10
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Natural and Synthetic Biomaterials as Composites of Advanced Drug Delivery Nano Systems (ADDNSS). Biomedical Applications2citations

Places of action

Chart of shared publication
Gardikis, K.
1 / 1 shared
Bryszewska, Maria
1 / 22 shared
Majoral, Jean-Pierre
1 / 10 shared
Mourelatou, E. A.
1 / 1 shared
Ionov, Maksim
1 / 18 shared
Garti, N.
1 / 2 shared
Libster, D.
1 / 1 shared
Dimas, K.
1 / 2 shared
Klajnert-Maculewicz, Barbara
1 / 16 shared
Aserin, A.
1 / 1 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Gardikis, K.
  • Bryszewska, Maria
  • Majoral, Jean-Pierre
  • Mourelatou, E. A.
  • Ionov, Maksim
  • Garti, N.
  • Libster, D.
  • Dimas, K.
  • Klajnert-Maculewicz, Barbara
  • Aserin, A.
OrganizationsLocationPeople

booksection

Natural and Synthetic Biomaterials as Composites of Advanced Drug Delivery Nano Systems (ADDNSS). Biomedical Applications

  • Gardikis, K.
  • Bryszewska, Maria
  • Majoral, Jean-Pierre
  • Mourelatou, E. A.
  • Ionov, Maksim
  • Garti, N.
  • Costas, Demetzos
  • Libster, D.
  • Dimas, K.
  • Klajnert-Maculewicz, Barbara
  • Aserin, A.
Abstract

The combination of natural and synthetic biomaterials leads to the formation of advanced Drug Delivery nano Systems (aDDnSs). The aDDnSs can be classified as hybridic (hy‐) or chimeric (chi‐) based on the nature – same or different respectively ‐ of biomaterials used. Such advanced bio complexes can alter the pharmacokinetic properties of the encapsulated drug and consequently its effectiveness. Numerous studies regarding the usage of natural or synthetic biomaterials as drug carriers have been performed, while only few studies concerning the combination of different kinds of biomaterials have been published. Carriers produced by the combination of liposomes and dendrimers were recently characterized as chi‐aDDnSs belonging to the class of Modulatory Liposomal Controlled Released Systems (MLCRSs) where the polymeric or the dendritic component act as modulator of the drug's release from the carrier. A small but significant number of studies have begun to shed light on the interactions between the components of the bio complexes that seem to be of utmost importance for the pharmacological effectiveness of the final formulation. This review deals with the categorization of the aDDnSs, the nature of the interacting forces between them and their potential biomedical applications.

Topics
  • composite
  • biomaterials
  • dendrimer