Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Klementiveva, O.

  • Google
  • 1
  • 5
  • 2

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2013Dendrimers as Antiamyloidogenic Agents. Dendrimer-amyloid Aggregates Morphology and Cell Toxicity2citations

Places of action

Chart of shared publication
Bryszewska, Maria
1 / 22 shared
Cladera, J.
1 / 1 shared
Benseny-Case, Nuria
1 / 2 shared
Appelhans, Dietmar
1 / 10 shared
Klajnert-Maculewicz, Barbara
1 / 16 shared
Chart of publication period
2013

Co-Authors (by relevance)

  • Bryszewska, Maria
  • Cladera, J.
  • Benseny-Case, Nuria
  • Appelhans, Dietmar
  • Klajnert-Maculewicz, Barbara
OrganizationsLocationPeople

booksection

Dendrimers as Antiamyloidogenic Agents. Dendrimer-amyloid Aggregates Morphology and Cell Toxicity

  • Bryszewska, Maria
  • Cladera, J.
  • Benseny-Case, Nuria
  • Appelhans, Dietmar
  • Klajnert-Maculewicz, Barbara
  • Klementiveva, O.
Abstract

Dendrimers are branched polymeric structures that have been shown to have a promising antiamyloidogenic potential by interfering with the polymerization process leading to the formation of the amyloid aggregates related to conformational diseases, such as Alzheimer's and prion diseases. It has been established that there is a relationship between the morphology of the amyloid aggregates and the amyloid peptides or proteins toxicity: fibrillar structures present low or no toxicity, whereas oligomeric species and amorphous aggregates, the so called granular non‐fibrillar aggregates (GNAs), are toxic to cells. When interacting with the amyloid peptide associated to the onset and development of Alzheimer's disease, dendrimers can either accelerate the formation of fibrillar structures or inhibit it. Inhibition however may mean promoting the formation of amorphous aggregates. We summarize in the present chapter the experimental evidence showing that when used in a way that favors the formation and clumping of fibrils, dendrimers (glycodendrimers in particular) can reduce amyloid toxicity. However the same glycodendrimers used under different conditions can generate toxic GNAs, an aggregated form that could represent a general morphological signature for amyloid toxicity.

Topics
  • impedance spectroscopy
  • amorphous
  • toxicity
  • dendrimer